

Science and Technology Facilities Council

Neutrino Interactions and Future Experiments

Lu, Xianguo 卢显国 University of Warwick USTC Seminar, Hefei 7 November, 2023

1. Neutrinos in Standard Model

Atom

Elements (Mendeleev, 1869)

Fast forward

Fast forward

The *first* time to propose a new particle to "cover up" for **fundamental laws** *I have done a terrible thing, I have postulated a particle that cannot be detected.* —*Pauli, 1930*

Neutrinos in Standard Model

- 1. Electric charge = 0
- 2. Mass = 0 (turns out to be tiny but not zero in Nature!)
- 3. Have flavours

How do we know they exist?

– We wouldn't, really. <u>60,000,000,000</u> neutrinos from Sun arriving at Earth every second on every cm² surface, and of course we have evolved to ignore them!

– Discovered by Cowan & Reines, 1956, using nuclear reactors

https://cerncourier.com/a/ghosts-in-the-machine/

The detector used at Savannah River

- Three 1400-litre tanks of liquid scintillator (I, II and III)
- Each viewed by 100 phototubes
- Smaller tanks (A and B) contained 200 litres of water doped with cadmium.

https://cerncourier.com/a/ghosts-in-the-machine/

Before that, in 1951:

"Some hand-waving and rough calculations led me to conclude that the *bomb* was the best source" (Reines)

"I am become Death, the destroyer of worlds"

2. Massive Neutrinos

Neutrino Mass

[Mark Thomson's Particle Physics lecture notes]

PMNS Matrix

 $\theta_{13} \neq 0 \rightarrow \delta_{CP}$ can be observed

 θ_{12} : mixing between v_1 and v_2

 θ_{23} : mixing between ν_{μ} and ν_{τ}

 θ_{13} : if 0, effective 2 flavour mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\theta_{13} = 0$$

2-flavor oscillation

$$v_{\beta}$$

$$P(v_{\alpha}) + P(v_{\beta}) = 1$$

$$v_{\alpha}$$

Antineutrinos

Oscillation as a function of *time* line-in-**line** → same trivia

3-flavor oscillation

Antineutrinos

Oscillation as a function of *time* line-in-**plane** \rightarrow CP-violation possible

How Nature might work:

 $\left[egin{array}{ccc} |U_{e1}| & |U_{e2}| & |U_{e3}| \ |U_{\mu 1}| & |U_{\mu 2}| & |U_{\mu 3}| \ |U_{ au 1}| & |U_{ au 2}| & |U_{ au 3}| \end{array}
ight]$

	$0.801 \dots 0.845$	$0.513\ldots0.579$	$0.143 \ldots 0.156$
=	$0.233\ldots0.507$	$0.461\ldots0.694$	$0.631\ldots0.778$
	$0.261 \dots 0.526$	$0.471\ldots0.701$	$0.611\ldots0.761$

3. Neutrino Experiments

Neutrinos Sources

Focus of this talk

Atmospheric Neutrinos

7 November, 2023

UNDER CONSTRUCTION

[[]Physics Today 61, 5, 29 (2008)]

Travel 1/10 of Earth's diameter (baseline $L \sim 1300$ km)

Near Detectors

(more later...)

Future oscillation experiments

This talk only on

✤ accelerator and atmospheric GeV- ν

• v_{μ} flux*: v_{μ} disappear, v_{e} appear

Water Cherenkov detector

7 November, 2023

Source: http://www-sk.icrr.u-tokyo.ac.ip/sk/detector/image-e.html

Water Cherenkov detector

The New Impressive

4. Neutrino Interactions

Interaction inside nuclei

 $\Box v_{\mu/e}$ Charged Current (CC) for v detection

 \Box GeV- ν interaction: ν **N** interaction embedded in *nuclei* (A)

Medium effects—source of systematics
✓ <i>v</i> energy reconstruction, event classification
Nucleus is a black box
• Complexes 9 products of the second seco

✤ FSI

- NN correlations

►ermi motion & nuclear potential

Pauli-blocking

R: radial position, p_p : momentum

Final-state proton in neutrino interactions: momentum evolves as propagating out of the nucleaus

Medium effects

TKI (Transverse Kinematic Imbalance)

 \Box TK orthogonal to *unknown* E_{ν}

□ Embed in imbalance created by

Nucleus "contacting" medium

✓ Signature imbalance probing inside nuclei

What do you see in this sculpture?

Plastic scintillator tracker

- □ Also *active target*
 - Tracking + calorimetry
- Current role in studying ν interactions \Box Largest data set
- Systematic investigation cf. e.g. <u>MINERVA</u>, Eur. Phys. J. ST 230, 4243 (2021)

MINERvA, Measurement of the axial vector form factor from antineutrino-proton scattering, *Nature* 614, 48 (2023)

Detector DUNE

□ FD (Far Detector)

- LArTPC (Liquid Argon TPC)
- ✓ Mass-scalable for tracking + calo

DUNE

ProtoDUNE

Detector

LArTPC Demonstrator at CERN for DUNE FD

□ Hadron beams of 0.3-7 GeV/c

- ✤ 4.7 mm wire spacing (same as FD)
- Versatile reconstruction in LAr

Kinematic fitting improves π^0 energy resolution from 18% to 12%

Figure 7.18: The total energy of the π^0 particle before and after the kinematic fitting. The energy resolution is reduced from 18% to 12%. The dashed violet line represents the convergence rate of the fitting in each bin.

Kang Yang 杨康 (Oxford, PhD thesis, 2023)

Detector

□ FD (Far Detector)

- LArTPC (Liquid Argon TPC)
- ✓ Mass-scalable for tracking + calo
- □ Near Detector ND-LAr
 - Same technology as FD

□ Near Detector ND-GAr (Gaseous

Argon)

DUNE

- ✤ 10-bar argon-based gas TPC
- ~100 m³ gas volume surrounded by calorimeter
- ✤ B-field provides sign selection
- ✓ Large statistics of v interactions on gas
- \checkmark 4 π acceptance, very low tracking threshold
- ✓ Arguably the ultimate detector for v interactions

DUNE, instruments 5, 31 (2021)

Vessel (200 L 10 bar) for high-pressure TPC R&D @ WarTPC lab

Matt Snape (Warwick) and Philip Hamacher-Baumann (Aachen/Warwick) August 2022, Warwick

Counting oscillated v

At *far detector*, interactions *cannot* be measured with *unknown oscillated flux*

Measurement = (*flux* × *interaction*) \oplus **detector effects**

No two unknowns at the same time

Near detectors for the rescue

Model constr't

v_e/\bar{v}_e interactions

 $\Box \delta_{\rm CP}$ requires v_e and \bar{v}_e appearance

✓ Suppress v_e and \bar{v}_e bkg in beams

 \Box Need $\nu_e/\bar{\nu}_e$ interaction data

- $\Box v_{\mu}-A + \text{lepton universality constrains} \\ v_{e}-A \text{ to } 1^{\text{st}} \text{ order precision}$
- □ Oscillation requires 2nd order precision
 - Higher statistics and better-understood fluxes

Joint Autumn Meeting of nuSTORM and UK Muon Beams Collaboration London, 23-24 November, 2023

 \Box v from STORed Muons (nuSTORM)

 $\rightarrow \mu$

• $v_{\mu}/\bar{v}_e/\bar{v}_{\mu}/v_e$ fluxes from μ^{\pm} decays

✓ 1% or better flux precision

6D cooling demonstrator

v_e / \bar{v}_e interactions

□ δ_{CP} requires ν_e and $\bar{\nu}_e$ appearance ✓ Suppress ν_e and $\bar{\nu}_e$ bkg in beams

 \Box Need v_e/\bar{v}_e interaction data

 $\Box v_{\mu} - A + lepton universality constrains$ $v_e - A to 1st order precision$

□ Oscillation requires 2nd order precision

nuSTORM, arXiv:2203.07545

 $p_{\overline{v_u}}(E_v)$ (area normalised)

Target

OCS

 $\nu_{\mu}, \nu_{e},$

Detector

Summary

- 1. Neutrinos in Standard Model
- 2. Massive Neutrinos
- 3. Neutrino Experiments
- 4. Neutrino Interactions
 - a. Complicated subject in its own right
 - b. Need to measure all final-state particles
 - c. How to fully constrain medium effects? Hot topic in the field!

BACKUP

$$P(
u_{\mu}
ightarrow
u_{e}) \simeq \sin^{2} 2 heta_{13} \sin^{2} \Delta_{32} \left(\sin^{2} heta_{23} - rac{\sin 2 heta_{12} \sin 2 heta_{23}}{2\sin heta_{13}} \sin \delta_{
m cP} \sin \Delta_{21}
ight)
onumber \ \Delta_{ij} \equiv rac{\Delta m_{ij}^{2} L}{4E}
onumber \ \Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$

Liquid argon Time Projection Chamber (LArTPC)

CP Violation

Neutrino oscillations depend on mixing parameters and mass differences.

 $\begin{aligned} \text{Cij} &= \cos\theta_{ij} \\ \text{Sij} &= \sin\theta_{ij} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ \theta_{13} \neq 0 \rightarrow \delta_{CP} \text{ can be observed} \end{aligned}$

Appearance probability
of
$$\mathbf{v}_e$$
 in a \mathbf{v}_{μ} beam $P(\nu_{\mu} \to \nu_e) \simeq \sin^2 2\theta_{13} \sin^2 \Delta_{32} \left(\sin^2 \theta_{23} - \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \delta_{CP} \sin \Delta_{21} \right)$

CP-odd term

* neglecting matter effects

CP Violation

Neutrino oscillations depend on mixing parameters and mass differences.

 $\begin{aligned} c_{ij} &= \cos\theta_{ij} \\ s_{ij} &= \sin\theta_{ij} \\ \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \\ \\ \theta_{13} \neq 0 \rightarrow \delta_{CP} \text{ can be observed} \end{aligned}$ Appearance probability of $\bar{\nu}_{e}$ in a $\bar{\nu}_{\mu}$ beam $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \Delta_{32} \left(\sin^{2} \theta_{23} + \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2\sin \theta_{13}} \sin \delta_{CP} \sin \Delta_{21} \right) \end{aligned}$

flip sign

 $\delta_{CP} \rightarrow CP$ violation

CP violation: electron flavor appears from muon-flavor neutrinos and antineutrinos differently.

* neglecting matter effects

Cube assembly and fiber insertion ...

Weijun Li 利伟君 (Oxford/Warwick) January 2023, J-PARC

DUNE

ProtoDUNE

Detector

LArTPC Demonstrator at CERN for DUNE FD

□ Hadron beams of 0.3-7 GeV/*c*

- ✤ 4.7 mm wire spacing (same as FD)
- ✓ Versatile reconstruction in LAr

e/γ separation

7 November, 2023

Hyper-Kamiokande

□ FD: water Cherenkov

□ ND: IWCD (Intermediate Water Cherenkov Detector)

- ✤ Same technology as FD
- ✤ 50 m vertical shaft @ 750 m from beam source
 - ✓ 1°-4° off-axis (OA) angle ("PRISM Definition Part 1")

Medium effects

Hyper-Kamiokande

□ FD: water Cherenkov

□ ND: IWCD (Intermediate Water Cherenkov Detector)

- Same technology as FD
- ✤ 50 m vertical shaft @ 750 m from beam source
 - ✓ 1°-4° off-axis (OA) angle ("PRISM Definition Part 1")
- ✤ ~ 1% residual v_e/\bar{v}_e beam components
 - ✓ Large fraction at far-OA angle
 - ✓ Constrain v_e / \overline{v}_e (besides v_μ / \overline{v}_μ) cross sections on water (enabled by active γ shielding)

Medium effects

DUNE-PRISM

Medium effects

- ND-LAr & ND-GAr
- ✤ Up to 30 m off axis @ 574 m from beam source
 - ✓ 0°-3° off-axis angle
 - \checkmark E_v up to ~ 3 GeV, covering different interaction dynamics
 - ✓ Probe energy-dependent medium effects

DUNE, instruments 5, 31 (2021)

† Proton in GiBUU final-state transport *R*: radial position, M_p : mass, p_p : momentum

GiBUU version: Release 20	21, patch 1 (Mai 11, 2021)	
Input neutrino: v _µ @5GeV	X-axis: Mass of final-state proton	
Target nucleus: ¹² C	M_{proton} = sqrt(p_0^2 - p_1^2 - p_2^2 - p_3^2) Y-axis: The distance from nucleus center	
Interaction type: CC		
FSI = 0, 1, 2, 3, , 500	$R = sqrt(x^2 + y^2 + z^2)$	
nEnsemble: 4000	Z-axis: Proportional to Event Rate (with	

GiBUU version: Release 2021, patch 1 (Mai 11, 2021)				
Input neutrino: v _µ @5GeV	X-axis: Momentum of final-state proton			
Target nucleus: ¹² C	p_{proton} = sqrt($p_1^2 + p_2^2 + p_3^2$) Y-axis: The distance from nucleus center			
Interaction type: CC				
FSI = 0, 1, 2, 3, … , 500	R = sqrt(x^{2} + y^{2} + z^{2})			
nEnsemble: 4000	Z-axis: Proportional to Event Rate (with			
	norruoiaht)			

perweight)

Model constr't

v_e/\bar{v}_e interactions

□ δ_{CP} requires v_e and \bar{v}_e appearance ✓ Suppress v_e and \bar{v}_e bkg in beams

 \Box Need v_e/\bar{v}_e interaction data

- $\Box v_{\mu} A + lepton universality constrains$ $v_e - A to 1st order precision$
- □ Oscillation requires 2nd order precision
 - Higher statistics and better-understood fluxes

- Enhanced NeUtrino BEams from kaon Tagging (ENUBET)
 - v_e from e^+ tagging for $K^+ \to \pi^0 e^+ v_e$
 - v_{μ} from μ^+ tagging
 - Flux uncertainty ~ 1%

Atmospheric neutrino interaction products: big surprise (fixed) in a very popular event generator (Interesting story: <u>https://github.com/GENIE-MC/Generator/issues/226</u>)

Qiyu Yan 严启宇 (UCAS/Warwick)

Atmospheric ν υ energy & angle for *L/E*-variation

GeV-v interaction more critical and challenging

(E	Future Dscillation Experiment	E _v /GeV	Detector Technology	Target Nuclei
	lceCube Upgrade	3-10 (NMO sensitive region)	Cherenkov in ice	H ₂ O
KM	3NeT/ORCA		WC	H ₂ O
	Atmos-ν @JUNO		LS	CH _{1.6}

Model constr't

Atmospheric v

- \Box v energy & angle for *L*/*E*-variation
- No near detector
 - flux × interaction ambiguity
- □ Sensitive to new unknowns
 - E.g. unconstrained low-momentum proton production (450 MeV/c common tracker threshold)
 - Impact on very-low-threshold calo

Future Oscillation Experiment	<i>E</i> _ν /GeV	Detector Technology	Target Nuclei
IceCube Upgrade	3-10 (NMO sensitive region)	Cherenkov in ice	H ₂ O
KM3NeT/ORCA		WC	H ₂ O
Atmos-ν @JUNO		LS	CH _{1.6}

❑ Dedicated GeV-*ν* interaction measurements: MINERvA Medium Energy data

- \checkmark E_v peak at 6 GeV, tail up to 20 GeV
- ✓ CH and nuclear targets
- ✓ ~ 10 M-event data set

Awaiting the future

Detector Technology: neutrons

- ✓ *v* energy budget and event classification—missing piece for <u>exclusivity</u>
- Tagging and calorimetry exist
- 4-momentum determination on the verge (e.g. time of flight)

Medium effects

Analysis methods: v-hydrogen interaction

- ✓ Complete removal of medium effects
- Established: statistical subtraction between targets
- Ideas: <u>exclusivity</u> + TKI event-by-event selection using mass-scalable H-based compounds

Model constr't

Ex situ interaction measurements: precise nuclear response

- ✓ Break flux × interaction ambiguity
- Electron scattering + <u>exclusivity</u> for initial-and final-state effects (not vertex)

Selecting hydrogen out of Ar-C-H mixture using TKI

Federico Battisti (Oxford/Warwick)