Status of γ/ϕ_3 measurement @ Belle + Belle II

Xiaodong Shi KEK, IPNS 2023.08.31 @ USTC

Outline

- Why CPV is interesting and what is CKM matrix
- About γ/ϕ_3
- SuperKEKB and Belle II
- All γ/ϕ_3 results from Belle and Belle II
- Discussion and outlook ullet

Matter-antimatter asymmetry

• Same anti-matter and matter in the initial period.

• But now we observe much more matter than anti-matter!

 $\frac{N_B - N_{\overline{B}}}{N_B + N_{\overline{B}}} \sim 10^{-10}$

Matter-antimatter asymmetry, CP violation

- In 1967, Andrei Sakharov proposed three conditions for the matter-antimatter asymmetry:
 - Baryon number violation
 - C and CP violation
 - Interactions out of thermal equilibrium

• So we shall understand **CP violation** (CPV)!

Matter-antimatter asymmetry, CP violation

- In 1967, Andrei Sakharov proposed three conditions for the matter-antimatter asymmetry:
 - Baryon number violation
 - C and CP violation
 - Interactions out of thermal equilibrium

- In 1964, first CPV observation in Kaon system
- In 2001, CPV observed in B system
- In 2019, direct CPV observed in D system by LHCb
- Standard Model (SM) can describe these CPV by a phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix.

 So we shall understand CP violation (CPV)!

Matter-antimatter asymmetry, CP violation

- In 1967, Andrei Sakharov proposed three conditions for the matter-antimatter asymmetry:
 - Baryon number violation
 - C and CP violation
 - Interactions out of thermal equilibrium

- In 1964, first CPV observation in Kaon system
- In 2001, CPV observed in B system
- In 2019, direct CPV observed in D system by LHCb
- Standard Model (SM) can describe these CPV by a phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix.

 So we shall understand CP violation (CPV)!

• SM only gives $\sim 10^{-17}$,

$\frac{N_B - N_{\overline{B}}}{\sim} \sim 10^{-10}$ $N_{R} + N_{\overline{R}}$

need extra sources of CPV. Hint of NP?

CKM matrix and the unitary triangle

$$\begin{pmatrix} u \\ c \\ t \end{pmatrix} \leftarrow W^{\pm} \rightarrow \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- CKM matrix connects u- and d-type quarks via weak force
- In SM, CKM matrix is unitary: four free parameter, one of them is the complex phase, the only one source of CPV in quark sector in SM!
- One way to examine this CKM matrix: examine the unitarity: $\Sigma_i V_{ik} V^*_{il} = \Sigma_i V_{ki} V^*_{li} = \delta_{kl}$
- One "popular" case: $V_{ud}V_{ub}^{\ast} + V_{cd}V_{cb}^{\ast} + V$

$$V_{td}V_{tb}^* = 0$$

Is the triangle closed? (Hint of New Physics?)

Is the triangle closed? (Hint of New Physics?)

With results from BaBar, Belle, and LHCb's lacksquareRun1,2 data, the triangle is still closed.

•
$$\phi_1 = \beta = \arg(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}), (22.2 \pm 0.7)^\circ$$

• $\phi_2 = \alpha = \arg(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}), (85.2^{+4.8}_{-4.3})^\circ$
• $\phi_3 = \gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}), (66.2^{+3.4}_{-3.6})^\circ$
HFLAV

With much more data from LHCb and Belle II, \bullet we could shrink the uncertainty, test this triangle and look for hints from new physics.

Outline

- Why CPV is interesting and what is CKM matrix
- About γ/ϕ_3
- SuperKEKB and Belle II
- All γ/ϕ_3 results from Belle and Belle II
- Discussion and outlook ullet

$$\begin{array}{c} b\\ A^{2}\lambda^{4} & \begin{array}{c} A\lambda^{3}(\rho - i\eta + \frac{i}{2}\eta\lambda^{2})\\ A\lambda^{2}(1 + i\eta\lambda^{2})\\ 1 \end{array} \end{pmatrix} + \mathcal{O}(\lambda^{6}) \ (\sim 10^{-4}) \\ \end{array}$$

$$rac{V_{cs} V_{ub}}{V_{us} V_{cb}^*} \Big| f_{col}$$

$$\approx 0.1$$

$$\arg\left(-\frac{V_{cs} \quad V_{ub}}{V_{us} \quad V_{cb}^{*}}\right)$$

$$= \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right)$$

$$= \delta_B = Q$$

 $*r_B(D\pi^-) = (0.0049 \pm 0.0006)$

About ϕ_3

Current W.A.: [L

- $\phi_3 = (66.$
- $r_B(DK^-)$
- $\delta_B(DK^-)$
- $r_B(D\pi^-) =$
- $\delta_B(D\pi^-)$
- Also need measure r_B, δ_B at same time.
- Need consider the D decays, e.g. strong-phase difference.
 - CLEO-c and BESIII provides model-independent external inputs.
- Depends on the D decay final states, different methods:
 - **BPGGSZ**: self conjugated multi-body decays, e.g. $K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^- \pi^0, \pi^+ \pi^- \pi^+ \pi^-$
 - **GLW**: CP eigenstates, e.g. $K_S^0 \pi^0, K^+ K^-$
 - ADS: CF and DCS decays, e.g. $K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{\pm}\pi^{\mp}$
 - **GLS**: SCS decays, e.g. $K_S^0 K^{\mp} \pi^{\pm}$

$$\frac{\text{HFLAV}}{2^{+3.4}_{-3.6}}$$

$$= (0.0994 \pm 0.0026)$$

$$= (127.7^{+3.6}_{-3.9})^{\circ}$$

$$= (0.0049 \pm 0.0006)$$

$$= (294^{+9.7}_{-11})^{\circ}$$

About ϕ_3

Current W.A.: [HFLAV]

- $\phi_3 = (66.2^{+3.4}_{-3.6})^\circ$

- Also need measure r_B, δ_B at same time.
- Need consider the D decays, e.g. strong-phase difference.
 - CLEO-c and BESIII provides model-independent external inputs.
- Depends on the D decay final states, different methods:
 - **BPGGSZ**: self conjugated multi-body decays, e.g. $K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}$
 - **GLW**: CP eigenstates, e.g. $K_S^0 \pi^0, K^+ K^-$
 - ADS: CF and DCS decays, e.g. $K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{\pm}\pi^{\mp}$
 - **GLS**: SCS decays, e.g. $K_S^0 K^{\mp} \pi^{\pm}$

• Now the w.a. of ϕ_3 is dominated by LHCb.

About ϕ_3

- Theoretically clean, non-tree SM contribute $\sim 10^{-7}$ [arXiv:1308.5663]
- Current W.A.: $\phi_3 = (66.2^{+3.4}_{-3.6})^{\circ}$ [HFLAV], statistically uncertainty dominated.
- More B data in the next decades
 - LHCb expect 1.5° by end of Run 3 (~ 22 fb⁻¹), <1° by end of Run 4 (~ 50 fb⁻¹), ~ 0.4° in Phase II upgrade (~ 300 fb^{-1}).[arXiv:1709.10308, CERN-LHCC-2017-003]
 - Belle II expect 1.5° with 50 ab^{-1} [2020 snowmass].
- \rightarrow In the future, ϕ_3 can be a "**candle**" of SM.

15

Outline

- Why CPV is interesting and what is CKM matrix
- About γ/ϕ_3
- SuperKEKB and Belle II
- All γ/ϕ_3 results from Belle and Belle II
- Discussion and outlook ullet

Machine parameters as of June 8th 2022, with the design values in ()

Papameter	LER	HER	unit
Beam current	1321 (3600)	1099 (2600)	mA
# of bunches	22	249 (2500)	
Bunch current	0.587	0.489	mA
β_x^*/β_y^*	80/1.0 (32/0.27)	60/1.0 (25/0.30)	mm
Beam-Beam Parameter ξ_{y}	0.0407 (0.088)	0.0279 (0.081)	
σ_{y}^{*}	0.215 (0.048)	0.215 (0.062)	μm
tunes (x/y)	44.525/46.589	45.532/43.573	
Specific luminosity(×10 ³¹)	7.21		cm ⁻² s ⁻¹ /mA ²
Luminosity(×1034)	4.65 (60)		

- - luminosity)

Belle and Belle II detector

Belle and Belle II data sets

Total recorded integrated luminosity before Long Shutdown 1

10.8 GeV for bottomonium and exotic spectroscopy study.

Long Shutdown 1

Since summer 2022 data taking, SuperKEKB and Belle II are in LS1, until fall 2023. Several improvements for accelerator complex, to reduce background and improve luminosity, and detector upgrades, such as installation of the complete two-layer vertex pixel detector.

Belle II Physics

Belle II Collaboration

Outline

- Why CPV is interesting and what is CKM matrix
- About γ/ϕ_3
- SuperKEKB and Belle II
- All γ/ϕ_3 results from Belle and Belle II
- Discussion and outlook ullet

Similar analysis flow

• e^+e^- collide at $\Upsilon(4S)$, just above $B\bar{B}$ threshold: low background and well-known knowledge of initial state

 Use event shape to identify continuum background.

Extract signal on ΔE and BDT output.

24

BPGGSZ method (golden channel)

- D decays to self conjugated multi-body final states.
- Binned way to gain more sensitivity from interference between various partial waves in local region(bin).
- D information, $|A|_i, c_i, s_i$, are measured by CLEO-c and BESIII.

$$+\underbrace{r_B \sin(\delta_B \pm \gamma)}_{y_{\pm}}\underbrace{\sin(\delta_{D(\pm,\mp)})}_{s_i}]$$

• ϕ_3 's precision highly depends on the r_B 's value!

• Large $r_B \rightarrow$ large interference in B->DK-> more sensitive to

BPGGSZ results from Belle and Belle II

BPGGSZ results from Belle and Belle II

Looking for the optimized scheme and ci/si from BESIII!

• Observables: $R_{CP\pm} = \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to \bar{D}^0K^+)},$ $= 1 + r_B^2 + 2\eta_{CP}r_B\cos(\delta_B)\cos(\phi_3),$ $\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)$ $A_{CP\pm} = \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)},$ $= 2\eta_{CP} r_B \sin(\delta_B) \sin(\phi_3) / R_{CP\pm}.$

- D decays to CP eigenstates, e.g. K^+K^- (CP+) $K_{\rm S}^0 \pi^0$ (CP-).
- Size of CPV ~ r_{R} (10%).

• Can't determine ϕ_3 from GLW only: $(\phi_3, \delta_B) \leftrightarrow (\delta_B, \phi_3) \text{ or } (\delta_B - \pi, \phi_3 - \pi)$.

GLW results from Belle and Belle II

 $B^+ \to D^*K^+, D \to K^0_S \pi^0, K^+K^-, \pi^+\pi^-, K^0_S \phi, K^0_S \omega,$ Phys. Rev. D 73 (2006) 051106

 $A_1^* = -0.20 \pm 0.22(\text{stat}) \pm 0.04(\text{sys})$ $\mathcal{A}_{2}^{*} = 0.13 \pm 0.30 (\text{stat}) \pm 0.08 (\text{sys}),$

 $\mathcal{R}_1^* = 1.41 \pm 0.25 (\text{stat}) \pm 0.06 (\text{sys})$ $\mathcal{R}_2^* = 1.15 \pm 0.31 (\text{stat}) \pm 0.12 (\text{sys}).$

• Observables:

$$\begin{aligned} R_{\rm ADS}^{K\pi} &= \frac{\mathcal{B}(B^- \to [f]_D K^-) + \mathcal{B}(B^+ \to [\bar{f}]_D K^+)}{\mathcal{B}(B^- \to [\bar{f}]_D K^-) + \mathcal{B}(B^+ \to [f]_D K^+)}, \\ &= r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos\phi_3, \\ A_{\rm ADS}^{K\pi} &= \frac{\mathcal{B}(B^- \to [f]_D K^-) - \mathcal{B}(B^+ \to [\bar{f}]_D K^+)}{\mathcal{B}(B^- \to [f]_D K^-) + \mathcal{B}(B^+ \to [\bar{f}]_D K^+)}, \\ &= 2r_B r_D \sin(\delta_B + \delta_D) \sin\phi_3 / R_{\rm ADS}, \end{aligned}$$

- D decays to CF/DCS eigenstates, e.g. $K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}$
- Would be best if $r_D/r_B \sim 1$, then similar amplitude—> enhanced interference.

• For both $K^+\pi^-$, $K^+\pi^-\pi^0$, $\delta_D \sim 180^\circ$, then similar to GLW. Can't determine ϕ_3 from ADS only.

ADS results from Belle

$B^+ \rightarrow Dh^+, D \rightarrow K^+ \pi^-$ 711 fb-1 Belle Phys. Rev. Lett. 106 (2011) 231803

$$\begin{aligned} \mathcal{R}_{DK} &= [1.63^{+0.44}_{-0.41}(\text{stat})^{+0.07}_{-0.13}(\text{syst})] \times 10^{-2}, \\ \mathcal{R}_{D\pi} &= [3.28^{+0.38}_{-0.36}(\text{stat})^{+0.12}_{-0.18}(\text{syst})] \times 10^{-3}, \\ \mathcal{A}_{DK} &= -0.39^{+0.26}_{-0.28}(\text{stat})^{+0.04}_{-0.03}(\text{syst}), \\ \mathcal{A}_{D\pi} &= -0.04 \pm 0.11(\text{stat})^{+0.02}_{-0.01}(\text{syst}), \end{aligned}$$

$B^+ \to Dh^+, D \to K^+ \pi^- \pi^0$ 711 fb-1 Belle<u>Phys. Rev. D 88 (2013) 9, 091104</u>

 $R_{DK} = [1.98 \pm 0.62 (\text{stat.}) \pm 0.24 (\text{syst.})] \times 10^{-2},$ $R_{D\pi} = [1.89 \pm 0.54(\text{stat.})^{+0.22}_{-0.25}(\text{syst.})] \times 10^{-3}.$

 $A_{DK} = 0.41 \pm 0.30 (\text{stat.}) \pm 0.05 (\text{syst.}),$ $A_{D\pi} = 0.16 \pm 0.27 (\text{stat.})^{+0.03}_{-0.04} (\text{syst.}).$

GLS results from Belle and Belle II

 $B^{\pm} \to DK^{\pm}, D\pi^{\pm}$ with $D \to K_{S}^{0} K^{\pm} \pi^{\mp}$: SS: same-sign, OS: opposite sign.

Two sets of results: in full D phase space and in the K*K region (expected) large δ_D).

Observe 4 Acp and 3 BR ratios.

$$\begin{split} A_{SS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} - \delta_D)\sin\phi_3}{1 + (r_B^{DK})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}, \\ A_{OS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} + \delta_D)\sin\phi_3}{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ A_{SS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} - \delta_D)\sin\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ A_{OS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} + \delta_D)\sin\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}. \\ R_{SS}^{DK/D\pi} &= R\frac{1 + (r_B^{DK})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{D\pi} &= R\frac{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}. \end{split}$$

arXiv:2306.02940 submit to JHEP

362 fb-1 Belle II +711 fb-1 Belle In K*K region:

 $A_{\rm SS}^{DK} = 0.055 \pm 0.119 \pm 0.020,$

 $A_{\rm OS}^{DK} = 0.231 \pm 0.184 \pm 0.014,$

 $A_{\rm SS}^{D\pi} = 0.046 \pm 0.029 \pm 0.016,$

 $A_{\rm OS}^{D\pi} = 0.009 \pm 0.046 \pm 0.009,$

 $R_{\rm SS}^{DK/D\pi} = 0.093 \pm 0.012 \pm 0.005,$

 $R_{\rm OS}^{DK/D\pi} = 0.103 \pm 0.020 \pm 0.006,$

 $R_{\rm SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019,$

CLEO-c.[arXiv:1203.3804]

Outline

- Why CPV is interesting and what is CKM matrix
- About γ/ϕ_3
- SuperKEKB and Belle II
- All γ/ϕ_3 results from Belle and Belle II
- **Discussion and outlook** •

Combination at Belle & Belle II?

HFLAV doesn't think there is a Belle's ϕ_3 .

(*) Belle presented in 2012 a preliminary combination of their results, but this remains unpublished after more than two years and therefore we do not list it.

BaBar obtain $\gamma = (69^{+17}_{-16})^\circ$ $r_B(DK^+) = 0.092 + 0.013 - 0.012$ $\delta_{\rm B}(\rm DK^+) = (105 \, {}^{+16}_{-17})^{\circ}$ $r_B(D^*K^+) = 0.0106 + 0.019_{-0.036}$ $\delta_{\rm B}({\rm D}^*{\rm K}^+) = (294 + 21_{-31})^\circ$ $r_B(DK^{*+}) = 0.143 + 0.048_{-0.049}$ (*) $\delta_{\rm B}({\rm DK^{*+}}) = (101 \pm 43)^{\circ}$ (*) PRD 87 (2013) 052015

- Belle II now have three ϕ_3 -results: $B^+ \to I$
- It's time to have a Belle(II)'s ϕ_3 now, especially we can have a better feeling on the coming Belle II data.

LHCb obtain $\gamma = (67 \pm 4)^{\circ}$ $r_B(DK^+) = 0.0989 \pm 0.0050$ $\delta_{\rm B}({\rm DK^+}) = (131.2 + 5.1 - 5.9)^{\circ}$ $r_B(D^*K^+) = 0.191 + 0.045_{-0.038}$ $\delta_{B}(D^{*}K^{+}) = (332^{+8}_{-10})^{\circ}$ $r_B(DK^{*+}) = 0.092 + 0.018 - 0.033$ $\delta_{\rm B}({\rm DK^{*+}}) = (40 + 92_{-20})^{\circ}$ $r_{\rm B}(\rm DK^{*0}) = 0.221 + 0.044 - 0.047$ $\delta_{\rm B}({\rm DK}^{*0}) = (187 + 21 - 23)^{\circ}$ $r_{\rm B}(\rm DKrm) = 0.081 + 0.025_{-0.027}$ $\delta_{\rm B}({\rm DKnn}) = (351 + 9_{-37})^{\circ}$ $r_B(D_sK) = 0.30 \pm 0.09$ $\delta_{\rm B}({\rm D_sK}) = (355^{+17}_{-16})^{\circ}$ $\delta_{\rm B}({\rm D}\pi) = (17^{+29}_{-17})^{\circ}$ LHCb-CONF-2018-002, LHCb-CONF-2020-003

$$Dh^+, D \to K_S^0 h^+ h^-, K_S^0 \pi^0, K^+ K^-, K_S^0 K^\pm \pi^\mp$$

Some discussion about ϕ_3 combination

- We're working on the combination. Plan to release at <u>CKM conference</u> at September 18-22, 2023.
- Now, let's discuss with all public information...

Some discussion about ϕ_3 combination

- We're working on the combination. Plan to release at <u>CKM conference</u> at September 18-22, 2023.
- Now, let's discuss with all public information...
- From the golden channel $B^+ \to Dh^+, D \to K_S^0 h^+ h^- (JHEP 02(2022)063)$:

 $\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^\circ$ $r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002,$ $\delta_B^{DK} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^\circ$, $r_B^{D\pi} = 0.017 \pm 0.006 \pm 0.001 \pm 0.001,$ $\delta_B^{D\pi} = (341.0 \pm 17.0 \pm 1.2 \pm 2.6)^\circ$.

ulletworse a bit with same data size.

Comparing to W.A.: [HFLAV] $\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$ $r_{R}(DK^{-}) = (0.0994 \pm 0.0026)$ $\delta_B(DK^-) = (127.7^{+3.6}_{-3.9})^{\circ}$ $r_B(D\pi^-) = (0.0049 \pm 0.0006)$ $\delta_B(D\pi^-) = (294^{+9.7}_{-11})^{\circ}$

Large r_B observed now, so if future Belle II's data favor the w.a. r_B , the ϕ_3 's precision will be

Some discussion about ϕ_3 combination

- We're working on the combination. Plan to release at <u>CKM conference</u> at September 18-22, 2023.
- Now, let's discuss with all public information...
- From the golden channel $B^+ \to Dh^+, D \to K_{S}^0 h^+ h^- (JHEP 02(2022)063)$:

 $\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^\circ$ $r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002,$ $\delta_B^{DK} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^\circ,$ $r_B^{D\pi} = 0.017 \pm 0.006 \pm 0.001 \pm 0.001,$ $\delta_B^{D\pi} = (341.0 \pm 17.0 \pm 1.2 \pm 2.6)^\circ$.

unexpected precision from ADS method. Not true anymore with w.a. $\delta_B(D\pi)$.

Comparing to W.A.: [HFLAV] $\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$ $r_B(DK^-) = (0.0994 \pm 0.0026)$ $\delta_B(DK^-) = (127.7^{+3.6}_{-3.9})^{\circ}$ $r_{\rm R}(D\pi^{-}) = (0.0049 \pm 0.0006)$ $\delta_B(D\pi^-) = (294^{+9.7}_{-11})^{\circ}$

• $(\delta_B(D\pi) + \delta_D) \sim 180^\circ$, $\cos(\delta_B(D\pi) + \delta_D)$'s uncertainty is much smaller than expected ->

Updates expect in near future

 $B^+ \rightarrow Dh^+, D \rightarrow K_S^0 \pi^+ \pi^- \pi^0 ((5.7^{+10.2}_{-8.8} \pm 3.5 \pm 5.7)^\circ)$, currently only CLEO's ci,si, binning scheme is available, which is **not** optimized for ϕ_3 .

Large Br: 5.2%; $F_{+} \sim 0.3$, $\sum c_i \sqrt{T_i \bar{T}_i} \sim -0.2$

We expect an optimized binning scheme and a precise ci/si from BESIII's 8fb⁻¹(~ 10 times than CLEO's).

Expect a more "normal" result from this channel.

By Toy MC, @50/ab, from $B^+ \to Dh^+, D \to K_S^0 \pi^+ \pi^- \pi^0$,

- with current Ti/ci/si, $\sim 5^{\circ}$
- With Kspipi's Ti/ci/si, ~2°

Updates expect in future

Extra channels: (<u>https://confluence.desy.de/display/BI/Physics+BtoCharm</u>) $B^+ \to Dh^+, D \to K_I \pi^+ \pi^-$: Unique to Belle/Bellell $B^+ \to Dh^+, D \to K^- \pi^+ \pi^- \pi^+$: BESIII tells the local information $B^+ \to Dh^+, D \to K^- K^+ \pi^0 / \pi^- \pi^+ \pi^0$: BESIII will measure the local information. $B^+ \rightarrow Dh^+, D \rightarrow \pi^- \pi^+ \pi^0 \pi^0$: Belle/Bellell's advantage $B^+ \to Dh^+, D \to K^- \pi^+ \pi^0$: local information? Will also be helpful for mixing study.

New novel methods when we have 20 ab^{-1} ? Un-binned way (Fourier analysis) in $B^+ \rightarrow Dh^+, D \rightarrow K_S \pi^+ \pi^-$ [Eur.Phys.J.C 78 (2018) 2, 121] Combined fit between B data and charm data (BESIII). (LHCb are doing it now.)

Determine hadronic parameter independently?

Measure r_R^{DK} solo? Now in all methods, we determine r_R^{DK} , δ_R^{DK} , ϕ_3 simultaneously. And we know the ϕ_3 's precision highly depends on r_R^{DK} 's value. Can we determine r_R^{DK} solo? Will be an important extra constrain on ϕ_3 !

Experimentally: $N(B^+ \rightarrow D^0 K^+, D^0 \rightarrow K^- e^+ \nu_{\rho})/N(B^+ \rightarrow D^0 K^+ \rightarrow D^0 K^+, D^0 \rightarrow K^- e^+ \nu_{\rho})/N(B^+ \rightarrow D^0 K^+ \rightarrow D^0$ Rough estimation: for CF channel: N(raw)/1 ab^{-1} ~ 6500

- If use hadronic tag (FEI): eff ~ 0.2%? N(CF) ~600 at 50 ab^{-1}
- Untag? Fit $\cos\theta_{BY}$, like semi-leptonic study. Maybe more difficult, due to small $p(\nu_{\rho})$. N(CF) ~60000 at 50 ab^{-1} , 4% precision? Won't be useful.

$$B^+ \to \bar{D}^0 K^+, \bar{D}^0 \to K^+ e^- \bar{\nu}_e),$$

$$\cos\theta_{BY} = \frac{2E_B^* E_Y^* - M_B^2}{2p_B^* p_Y^*}$$

More idea? In paper arXiv: 1606.09129, they use branching ratios and r_R^{DK} to determine $r_R^{D\pi}$ with SU(3) symmetry.

(Before summary) why Belle II still work on ϕ_3 ?

- Almost all channels are full reconstructed. LHCb is a monster...
- ϕ_3 is a basic parameter, as another B-factory, we must give our ϕ_3 , to confirm LHCb's ϕ_3 .

(Before summary) why Belle II still work on ϕ_3 ?

- Almost all channels are full reconstructed. LHCb is a monster...
- ϕ_3 is a basic parameter, as another B-factory, we must give our ϕ_3 , to confirm LHCb's ϕ_3 .
- LHCb has interesting ϕ_3 in some channels. —> Need Belle II's crosscheck.

(Before summary) why Belle II still work on ϕ_3 ?

Almost all channels are full reconstructed. LHCb is a monster... ullet

• Still a chance to show same sensitivity to $\phi_3!$

Summary

- conference 2023).
- For future, important channels:
 - $B^+ \to Dh^+, D \to K_S^0 \pi^+ \pi^- \pi^0$, need wait BESIII's new binning scheme and ci/si

 - $B^+ \to Dh^+, D \to K_L^0 \pi^+ \pi^-$, Belle II's unique channel.
 - $B^+ \to Dh^+, D \to \pi^+ \pi^- \pi^0 \pi^0$, Belle II's advantage.
 - $B^+ \to Dh^+, D \to K^- \pi^+ \pi^0$: local information? Will also be helpful for mixing study.
- This CKM angle γ/ϕ_3 is not only B factory's task, also need BESIII's contribution.
- Let's make γ/ϕ_3 a **candle** parameter!

• Review the γ/ϕ_3 measurement at Belle (II). Discuss about combination of γ/ϕ_3 (<u>CKM</u>)

• $B^+ \to Dh^+, D \to h^+ h^- \pi^0$, BESIII may have local information few years later

Thank you!

Introduction –Sudden beam loss

Sudden beam loss:

- Fast beam loss within three or four turns (1 turn ~10 μs)
- Reasons remain unknown
- More likely occurred in LER.

Effects of Sudden beam loss

- Caused severe damage to the vertical collimators
- Caused quenches of final focusing magnets (QCS)
- Resulted in large radiation doses around the interaction region (IR)
- limited the maximum bunch current

Collimator head after catastrophic sudden beam loss

Discussion -- possible cause of Sudden Beam Loss

Can not be attributed to conventional beam instabilities: too fast (less than 3-4 turns) and no beam instabilities observed

May not be due to Beam-dust interaction:

examined in simulation, in which the beam particles are lost mainly at the horizontal collimators while what we observed is mainly at vertical collimators.

"Fire ball" Hypotheses has been proposed as a possible reason for sudden beam loss.

Physical process of the "Fireball" hypothesis, leading to fast beam loss

$$d\Gamma_{B^{\pm}}(\mathbf{x}) = A_{(\pm,\mp)}^{2} + r_{B}^{2} A_{(\mp,\pm)}^{2} + 2A_{(\pm,\mp)} A_{(\mp,\pm)} \left[\underbrace{r_{B} \cos(\delta_{B} \pm \gamma)}_{x_{\pm}} \underbrace{\cos(\delta_{D(\pm,\mp)})}_{c_{i}} + \underbrace{r_{B} \sin(\delta_{B} \pm \gamma)}_{y_{\pm}} \underbrace{\sin(\delta_{D(\pm,\mp)})}_{s_{i}} \right]$$

 5×10^{-9} , and the small size of the interference, proportional to $r_B \approx c_F |V_{cs} V_{ub}^*| / |V_{us} V_{cb}^*| \approx 0.1$, where $c_F \approx 0.2$ is a color suppression factor [11–13]. Therefore a pre-

