Status of γ / ϕ_{3} measurement @ Belle + Belle II

Xiaodong Shi
KEK, IPNS
2023.08.31 @ USTC

Outline

- Why CPV is interesting and what is CKM matrix
- About γ / ϕ_{3}
- SuperKEKB and Belle II
- All γ / ϕ_{3} results from Belle and Belle II
- Discussion and outlook

Matter-antimatter asymmetry

- Same anti-matter and matter in the initial period.
- But now we observe much more matter than anti-matter!

$$
\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}} \sim 10^{-10}
$$

Matter-antimatter asymmetry, CP violation

- In 1967, Andrei Sakharov proposed three conditions for the matter-antimatter asymmetry:
- Baryon number violation
- C and CP violation
- Interactions out of thermal equilibrium
- So we shall understand CP violation (CPV)!

Matter-antimatter asymmetry, CP violation

- In 1967, Andrei Sakharov proposed three conditions for the matter-antimatter asymmetry:
- Baryon number violation
- C and CP violation
- Interactions out of thermal equilibrium
- So we shall understand CP violation (CPV)!
- In 1964, first CPV observation in Kaon system
- In 2001, CPV observed in B system
- In 2019, direct CPV observed in D system by LHCb
- Standard Model (SM) can describe these CPV by a phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Matter-antimatter asymmetry, CP violation

- In 1967, Andrei Sakharov proposed three conditions for the matter-antimatter asymmetry:
- Baryon number violation
- C and CP violation
- Interactions out of thermal equilibrium
- So we shall understand CP violation (CPV)!
- In 1964, first CPV observation in Kaon system
- In 2001, CPV observed in B system
- In 2019, direct CPV observed in D system by LHCb
- Standard Model (SM) can describe these CPV by a phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix.
- SM only gives $\sim 10^{-17}$,

$$
\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}} \sim 10^{-10}
$$

- need extra sources of CPV. Hint of NP?

CKM matrix and the unitary triangle

$$
\left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \leftarrow W^{ \pm} \rightarrow\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

- CKM matrix connects u - and d-type quarks via weak force
- In SM, CKM matrix is unitary: four free parameter, one of them is the complex phase, the only one source of CPV in quark sector in SM!
- One way to examine this CKM matrix: examine the unitarity:

$$
\Sigma_{i} V_{i k} V_{i l}^{*}=\Sigma_{i} V_{k i} V_{l i}^{*}=\delta_{k l}
$$

- One "popular" case: $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

Is the triangle closed? (Hint of New Physics?)

Is the triangle closed? (Hint of New Physics?)

- With results from BaBar, Belle, and LHCb's Run1,2 data, the triangle is still closed.
. $\phi_{1}=\beta=\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right),(22.2 \pm 0.7)^{\circ}$
- $\boldsymbol{\phi}_{2}=\alpha=\arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right),\left(85.2_{-4.3}^{+4.8}\right)^{\circ}$
. $\phi_{3}=\gamma=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right),\left(66.2_{-3.6}^{+3.4}\right)^{\text {HFLAV }}$
- With much more data from LHCb and Belle II, we could shrink the uncertainty, test this triangle and look for hints from new physics.

Outline

- Why CPV is interesting and what is CKM matrix
- About γ / ϕ_{3}
- SuperKEKB and Belle II
- All γ / ϕ_{3} results from Belle and Belle II
- Discussion and outlook

About ϕ_{3}

About ϕ_{3}

$$
\begin{aligned}
& \text { favoured } \\
& \text { relative amplitude: weak phase difference: } \\
& \left|\frac{V_{c s} V_{u b}^{*}}{V_{u s} V_{c b}^{*}}\right| f_{c o l} \quad \arg \left(-\frac{V_{c s} V_{u b}^{*}}{V_{u s} V_{c b}^{*}}\right) \\
& =r_{B} \approx 0.1 \quad=\arg \left(-\frac{V_{u b}^{*}}{V_{c b}^{*}}\right) \\
& =\delta_{B} \quad=\phi_{3}
\end{aligned}
$$

About ϕ_{3}

Current W.A.: [HFLAV]

- $\phi_{3}=(66.2+3.4 .4)^{\circ}$
- $r_{B}\left(D K^{-}\right)=(0.0994 \pm 0.0026)$
- $\delta_{B}\left(D K^{-}\right)=\left(127.7_{-3.9}\right)^{\circ}$
- $r_{B}\left(D \pi^{-}\right)=(0.0049 \pm 0.0006)$
- $\delta_{B}\left(D \pi^{-}\right)=\left(2944_{-11}^{+9.7}\right)^{\circ}$
- Also need measure r_{B}, δ_{B} at same time.
- Need consider the D decays, e.g. strong-phase difference.
- CLEO-c and BESIII provides model-independent external inputs.
- Depends on the D decay final states, different methods:
- BPGGSZ: self conjugated multi-body decays, e.g. $K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}, \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
- GLW: CP eigenstates, e.g. $K_{S}^{0} \pi^{0}, K^{+} K^{-}$
- ADS: CF and DCS decays, e.g. $K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{ \pm} \pi^{\mp}$
- GLS: SCS decays, e.g. $K_{S}^{0} K^{\mp} \pi^{ \pm}$

About ϕ_{3}

Current W.A.: [HFLAV]

- $\phi_{3}=\left(66.2_{-3.5}^{+3.4}\right)^{0}$
- $r_{B}\left(D K^{-}\right)=(0.0994 \pm 0.0026)$
- $\delta_{B}\left(D K^{-}\right)=\left(127.7_{-3.9}^{+3.6}\right)^{\circ}$
- $r_{B}\left(D \pi^{-}\right)=(0.0049 \pm 0.0006)$
- $\delta_{B}\left(D \pi^{-}\right)=\left(294_{-11}^{+9.7}\right)^{\circ}$
- Also need measure r_{B}, δ_{B} at same time.
- Need consider the D decays, e.g. strong-phase difference.
- CLEO-c and BESIII provides model-independent external inputs.
- Depends on the D decay final states, different methods:
- BPGGSZ: self conjugated multi-body decays, e.g. $K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}, \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
- GLW: CP eigenstates, e.g. $K_{S}^{0} \pi^{0}, K^{+} K^{-}$
- ADS: CF and DCS decays, e.g.
$K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{ \pm} \pi^{\mp}$
- GLS: SCS decays, e.g. $K_{S}^{0} K^{\mp} \pi^{ \pm}$

- Now the w.a. of ϕ_{3} is dominated by LHCb.

About ϕ_{3}

- Theoretically clean, non-tree SM contribute $\sim 10^{-7}$ [arXiv:1308.5663]
- Current W.A.: $\phi_{3}=\left(66.2_{-3.6}^{+3.4}{ }^{\circ}\right.$ [HFLAV], statistically uncertainty dominated.
- More B data in the next decades
- LHCb expect 1.5° by end of Run $3\left(\sim 22 \mathrm{fb}^{-1}\right),<1^{\circ}$ by end of Run $4\left(\sim 50 \mathrm{fb}^{-1}\right)$, 0.4° in Phase II upgrade ($\sim 300 \mathrm{fb}^{-1}$). [arXiv:1709.10308, CERN-LHCC-2017-003]
- Belle II expect 1.5° with $50 \mathrm{ab}^{-1}$ [2020 snowmass].
\rightarrow In the future, ϕ_{3} can be a "candle" of SM.

Outline

- Why CPV is interesting and what is CKM matrix
- About γ / ϕ_{3}
- SuperKEKB and Belle II
- All γ / ϕ_{3} results from Belle and Belle II
- Discussion and outlook

SuperKEKB

Machine parameters as of June $8^{\text {th }}$ 2022, with the design values in ()

Papameter	LER	HER	unit
Beam current	1321 (3600)	1099 (2600)	mA
\# of bunches	2249 (2500)		
Bunch current	0.587	0.489	mA
$\beta_{x}^{*} / \beta_{j}^{*}$	80/1.0 (32/0.27)	60/1.0 (25/0.30)	mm
Beam-Beam Parameter ξ_{v}	$0.0407(0.088)$	0.0279 (0.081)	
$\sigma_{\mathrm{y}}{ }^{\text { }}$	0.215 (0.048)	0.215 (0.062)	$\mu \mathrm{m}$
tunes (x / y)	44.525/46.589	45.532/43.573	
Specific luminosity ($\times 10^{31}$)			$\mathrm{cm}^{-2} \mathrm{~s}^{-1 / m A}{ }^{2}$
Luminosity ($\times 10^{34}$)			

Belle and Belle II detector

Belle and Belle II data sets

$711 \mathrm{fb}^{-1} @ \Upsilon(4 S)$ from Belle

Total recorded integrated luminosity before Long Shutdown 1

- First physics run recorded $1{ }^{\text {pate }} 20^{2 \prime 2} 9$
- 362/fb at $Y(4 S)$ (goal: 50/ab)
- 42/fb off-resonance, 60 MeV below Y(4S)
- 19/fb energy scan between 10.6 to 10.8 GeV for bottomonium and exotic spectroscopy study.

Long Shutdown 1

Since summer 2022 data taking, SuperKEKB and Belle II are in LS1, until fall 2023. Several improvements for accelerator complex, to reduce background and improve luminosity, and detector upgrades, such as installation of the complete two-layer vertex pixel detector.

Belle II Physics

Belle II Physics book(Prog. Theor. Exp. Phys. 2019, 123C01)

Belle II Collaboration

Outline

- Why CPV is interesting and what is CKM matrix
- About γ / ϕ_{3}
- SuperKEKB and Belle II
- All γ / ϕ_{3} results from Belle and Belle II
- Discussion and outlook

Similar analysis flow

- $e^{+} e^{-}$collide at $\Upsilon(4 S)$, just above $B \bar{B}$ threshold: low background and well-known knowledge of initial state

$\Delta E=E_{B}^{*}-\sqrt{s} / 2$

- Use event shape to identify continuum background.

Extract signal on ΔE and BDT output.

BPGGSZ method (golden channel)

- D decays to self conjugated multi-body final states.
- Binned way to gain more sensitivity from interference between various partial waves in local region(bin).
- D information, $|A|_{i}, c_{i}, s_{i}$, are measured by CLEO-c and BESIII.

$$
\begin{aligned}
d \Gamma_{B^{ \pm}}(\mathbf{x})= & A_{(\pm, \mp)}^{2}+r_{B}^{2} A_{(\mp, \pm)}^{2} \\
& +2 A_{(\pm, \mp)} A_{(\mp, \pm)}[\underbrace{r_{B} \cos \left(\delta_{B} \pm \gamma\right)}_{x_{ \pm}} \underbrace{\cos \left(\delta_{D(\pm, \mp)}\right)}_{c_{i}}+\underbrace{r_{B} \sin \left(\delta_{B} \pm \gamma\right)}_{y_{ \pm}} \underbrace{\sin \left(\delta_{D(\pm, \mp)}\right)}_{s_{i}}]
\end{aligned}
$$

- ϕ_{3} 's precision highly depends on the r_{B} 's value!
- Large r_{B}-> large interference in B->DK-> more sensitive to ϕ_{3}.

BPGGSZ results from Belle and Belle II

$B^{+} \rightarrow D^{*} h^{+}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$
Phys. Rev. D 81 (2010) 112002

$$
\left(73.9_{-20.2}^{+18.9} \pm 4.2 \pm 8.9\right)^{\circ}
$$

$$
\text { LHCb got }(69 \pm 14)^{\circ}
$$

Preliminary on LP 2023

BPGGSZ results from Belle and Belle II

GLW methods

- D decays to CP eigenstates, e.g. $K^{+} K^{-}$ (CP+) $K_{S}^{0} \pi^{0}$ (CP-).
- Size of CPV $\sim r_{B}(10 \%)$.
- Observables:

$$
\begin{array}{rlrl}
R_{C P \pm} & =\frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)}, & & \\
& =1+r_{B}^{2}+2 \eta_{C P} r_{B} \cos \left(\delta_{B}\right) \cos \left(\phi_{3}\right), & \text { Can't determine } \phi_{3} \text { from GLW only: } \\
A_{C P \pm} & =\frac{\mathcal{B}\left(B^{-} \rightarrow \bar{D}_{C P \pm} K^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}, & & \left(\phi_{3}, \delta_{B}\right) \leftrightarrow\left(\delta_{B}, \phi_{3}\right) \text { or }\left(\delta_{B}-\pi, \phi_{3}-\pi\right) . . \\
& =2 \eta_{C P} r_{B} \sin \left(\delta_{B}\right) \sin \left(\phi_{3}\right) / R_{C P \pm} . & &
\end{array}
$$

GLW results from Belle and Belle II

$$
B^{+} \rightarrow D h^{+}, D \rightarrow K_{S}^{0} \pi^{0}, K^{+} K^{-}
$$

arXiv:2308.05048 submit to JHEP

$$
\begin{gathered}
B^{+} \rightarrow D^{*} K^{+}, D \rightarrow K_{S}^{0} \pi^{0}, K^{+} K^{-}, \pi^{+} \pi^{-}, K_{S}^{0} \phi, K_{S}^{0} \omega, \\
\text { Phys. Rev. D } 73(2006) 051106
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{A}_{1}^{*}=-0.20 \pm 0.22(\text { stat }) \pm 0.04(\text { sys }) \\
& \mathcal{A}_{2}^{*}=0.13 \pm 0.30(\text { stat }) \pm 0.08(\text { sys }) \\
& \mathcal{R}_{1}^{*}=1.41 \pm 0.25(\text { stat }) \pm 0.06(\text { sys }) \\
& \mathcal{R}_{2}^{*}=1.15 \pm 0.31 \text { (stat) } \pm 0.12 \text { (sys). }
\end{aligned}
$$

ADS methods

- D decays to CF/DCS eigenstates, e.g $K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$
- Would be best if $r_{D} / r_{B} \sim 1$, then similar amplitude—> enhanced interference.
- For both $K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}, \delta_{D} \sim 180^{\circ}$, then similar to GLW. Can't determine ϕ_{3} from ADS only.

ADS results from Belle

$$
\begin{aligned}
& B^{+} \rightarrow D h^{+}, D \rightarrow K^{+} \pi^{-} 711 \text { fb-1 Belle } \\
& \text { Phys. Rev. Lett. } 106(2011) 231803
\end{aligned}
$$

$$
B^{+} \rightarrow D h^{+}, D \rightarrow K^{+} \pi^{-} \pi^{0}
$$

$$
\begin{aligned}
\mathcal{R}_{D K} & =\left[1.63_{-0.41}^{+0.44}(\text { stat })_{-0.13}^{+0.07}(\text { syst })\right] \times 10^{-2} \\
\mathcal{R}_{D \pi} & =\left[3.28_{-0.36}^{+0.38}(\text { stat })_{-0.18}^{+0.12}(\text { syst })\right] \times 10^{-3} \\
\mathcal{A}_{D K} & =-0.39_{-0.28}^{+0.26}(\text { stat })_{-0.03}^{+0.04}(\text { syst }) \\
\mathcal{A}_{D \pi} & =-0.04 \pm 0.11(\text { stat })_{-0.01}^{+0.02}(\text { syst })
\end{aligned}
$$

$$
\begin{aligned}
& R_{D K}=\left[1.98 \pm 0.62 \text { (stat.) } \pm 0.24(\text { syst.) }] \times 10^{-2}\right. \\
& R_{D \pi}=[1.89 \pm 0.54 \text { (stat.) } \\
&-0.25 \\
& A_{D K}=0.41 \pm 0.30(\text { syst. })] \times 10^{-3} \\
& A_{D \pi}=0.16 \pm 0.27(\text { stat. }) \pm 0.05 \text { (syst.) } \\
&-0.04 \\
&+0.03 \text { (syst.) }
\end{aligned}
$$

GLS results from Belle and Belle II

$B^{ \pm} \rightarrow D K^{ \pm}, D \pi^{ \pm}$with $D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$: SS: same-sign, OS: opposite sign.
Two sets of results: in full D phase space and in the $K^{*} K$ region (expected large δ_{D}).
Observe 4 Acp and 3 BR ratios.

$$
\begin{aligned}
A_{S S}^{D K} & =\frac{2 r_{B}^{D K} r_{D} \kappa_{D} \sin \left(\delta_{B}^{D K}-\delta_{D}\right) \sin \phi_{3}}{1+\left(r_{B}^{D K}\right)^{2} r_{D}^{2}+2 r_{B}^{D K} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D K}-\delta_{D}\right) \cos \phi_{3}}, \\
A_{O S}^{D K} & =\frac{2 r_{B}^{D K} r_{D} \kappa_{D} \sin \left(\delta_{B}^{D K}+\delta_{D}\right) \sin \phi_{3}}{\left(r_{B}^{D K}\right)^{2}+r_{D}^{2}+2 r_{B}^{D K} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D K}+\delta_{D}\right) \cos \phi_{3}}, \\
A_{S S}^{D \pi} & =\frac{2 r_{B}^{D \pi} r_{D} \kappa_{D} \sin \left(\delta_{B}^{D \pi}-\delta_{D}\right) \sin \phi_{3}}{1+\left(r_{B}^{D \pi}\right)^{2} r_{D}^{2}+2 r_{B}^{D \pi} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D \pi}-\delta_{D}\right) \cos \phi_{3}}, \\
A_{O S}^{D \pi} & =\frac{2 r_{B}^{D \pi} r_{D} \kappa_{D} \sin \left(\delta_{B}^{D \pi}+\delta_{D}\right) \sin \phi_{3}}{\left(r_{B}^{D \pi}\right)^{2}+r_{D}^{2}+2 r_{B}^{D \pi} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D \pi}+\delta_{D}\right) \cos \phi_{3}} . \\
R_{S S}^{D K / D \pi} & =R \frac{1+\left(r_{B}^{D K}\right)^{2} r_{D}^{2}+2 r_{B}^{D K} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D K}-\delta_{D}\right) \cos \phi_{3}}{1+\left(r_{B}^{D \pi}\right)^{2} r_{D}^{2}+2 r_{B}^{D \pi} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D \pi}-\delta_{D}\right) \cos \phi_{3}}, \\
R_{O S}^{D K / D \pi} & =R \frac{\left(r_{B}^{D K}\right)^{2}+r_{D}^{2}+2 r_{B}^{D K} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D K}+\delta_{D}\right) \cos \phi_{3}}{\left(r_{B}^{D \pi}\right)^{2}+r_{D}^{2}+2 r_{B}^{D \pi} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D \pi}+\delta_{D}\right) \cos \phi_{3}}, \\
R_{S S / O S}^{D \pi} & =\frac{1+\left(r_{B}^{D \pi}\right)^{2} r_{D}^{2}+2 r_{B}^{D \pi} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D \pi}-\delta_{D}\right) \cos \phi_{3}}{\left(r_{B}^{D \pi}\right)^{2}+r_{D}^{2}+2 r_{B}^{D \pi} r_{D} \kappa_{D} \cos \left(\delta_{B}^{D \pi}+\delta_{D}\right) \cos \phi_{3}} .
\end{aligned}
$$

In K*K region:

$$
\begin{aligned}
& A_{\mathrm{SS}}^{D K}=0.055 \pm 0.119 \pm 0.020 \\
& A_{\mathrm{OS}}^{D K}=0.231 \pm 0.184 \pm 0.014
\end{aligned}
$$

$$
A_{\mathrm{SS}}^{D \pi}=0.046 \pm 0.029 \pm 0.016
$$

$$
A_{\mathrm{OS}}^{D \pi}=0.009 \pm 0.046 \pm 0.009
$$

$$
R_{\mathrm{SS}}^{D K / D \pi}=0.093 \pm 0.012 \pm 0.005
$$

$$
R_{\mathrm{OS}}^{D K / D \pi}=0.103 \pm 0.020 \pm 0.006
$$

$$
R_{\mathrm{SS} / \mathrm{OS}}^{D \pi}=2.412 \pm 0.132 \pm 0.019
$$

- Model-independent result from CLEO-c.[arXiv:1203.3804]

Outline

- Why CPV is interesting and what is CKM matrix
- About γ / ϕ_{3}
- SuperKEKB and Belle II
- All γ / ϕ_{3} results from Belle and Belle II
- Discussion and outlook

Combination at Belle \& Belle II?

HFLAV doesn't think there is a Belle's ϕ_{3}.
${ }^{(*)}$ Belle presented in 2012 a preliminary combination of their results, but this remains unpublished after more than two years and therefore we do not list it.

$$
\begin{aligned}
& \text { BaBar obtain } Y=\left(69{ }^{+17}{ }_{-16}\right)^{\circ} \\
& r_{B}\left(\mathrm{DK}^{+}\right)=0.092^{+0.013}{ }_{-0.012} \\
& \delta_{\mathrm{B}}\left(\mathrm{DK}^{+}\right)=\left(105^{+16}{ }_{-17}\right)^{\circ} \\
& r_{B}\left(D^{*} K^{+}\right)=0.0106^{+0.019}{ }_{-0.036} \\
& \delta_{B}\left(D^{*} K^{+}\right)=\left(294^{+21}{ }_{-31}\right)^{\circ} \\
& r_{B}\left(\text { DK }^{\star+}\right)=0.143^{+0.048}{ }_{\left.-0.0499^{*}\right)} \\
& \left.\delta_{\mathrm{B}}\left(\mathrm{DK}^{*+}\right)=(101 \pm 43)^{\circ}{ }^{(}{ }^{*}\right) \\
& \text { PRD } 87 \text { (2013) } 052015
\end{aligned}
$$

$$
\begin{aligned}
& \text { LHCb obtain } y=(67 \pm 4)^{\circ} \\
& r_{B}\left(\mathrm{DK}^{+}\right)=0.0989 \pm 0.0050 \\
& \delta_{B}\left(\mathrm{DK}^{+}\right)=\left(131.2^{+5.1}{ }_{-5.9}\right)^{\circ} \\
& r_{B}\left(D^{*} K^{+}\right)=0.191^{+0.045}{ }_{-0.038} \\
& \delta_{B}\left(D^{*} K^{+}\right)=\left(332^{+8}{ }_{-10}\right)^{\circ} \\
& r_{B}\left(\text { DK }^{\star+}\right)=0.092^{+0.018}{ }_{-0.033} \\
& \delta_{\mathrm{B}}\left(\mathrm{DK}^{*+}\right)=\left(40^{+92}{ }_{-20}\right)^{\circ} \\
& r_{B}\left(\mathrm{DK}^{* 0}\right)=0.221^{+0.044}{ }_{-0.047} \\
& \delta_{\mathrm{B}}\left(\mathrm{DK}^{* 0}\right)=\left(187^{+21}{ }_{-23}\right)^{\circ} \\
& r_{B}(D K г \pi)=0.081^{+0.025}{ }_{-0.027} \\
& \delta_{B}(\text { DKтाँ })=\left(351^{+9}{ }_{-37}\right)^{\circ} \\
& r_{B}\left(D_{s} K\right)=0.30 \pm 0.09 \\
& \delta_{B}\left(D_{s} K\right)=\left(355^{+17}{ }_{-16}\right)^{\circ} \\
& \delta_{B}(D \pi)=\left(17^{+29}-17\right)^{\circ}
\end{aligned}
$$

- Belle Il now have three ϕ_{3}-results: $B^{+} \rightarrow D h^{+}, D \rightarrow K_{S}^{0} h^{+} h^{-}, K_{S}^{0} \pi^{0}, K^{+} K^{-}, K_{S}^{0} K^{ \pm} \pi^{\mp}$
- It's time to have a Belle(II)'s ϕ_{3} now, especially we can have a better feeling on the coming Belle II data.

Some discussion about ϕ_{3} combination

- We're working on the combination. Plan to release at CKM conference at September 18-22, 2023.
- Now, let's discuss with all public information...

Some discussion about ϕ_{3} combination

- We're working on the combination. Plan to release at CKM conference at September 18-22, 2023.
- Now, let's discuss with all public information...
- From the golden channel

$$
\begin{array}{rlrl}
B^{+} & \rightarrow D h^{+}, D \rightarrow K_{S}^{0} h^{+} h^{-}(\text {JHEP 02(2022)063): } & & \text { Comparing to W.A.: [HFLAV] } \\
\phi_{3} & =(78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}, & & \phi_{3}=\left(65.9_{-3.5}^{+3.3}\right)^{\circ} \\
r_{B}^{D K} & =0.129 \pm 0.024 \pm 0.001 \pm 0.002, & & r_{B}\left(D K^{-}\right)=(0.0994 \pm 0.0026) \\
\hline \delta_{B}^{D K}=(124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ}, & & \delta_{B}\left(D K^{-}\right)=\left(127.7_{-3.9}^{+3.6}\right)^{\circ} \\
r_{B}^{D \pi} & =0.017 \pm 0.006 \pm 0.001 \pm 0.001, & & r_{B}\left(D \pi^{-}\right)=(0.0049 \pm 0.0006) \\
\delta_{B}^{D \pi} & =(341.0 \pm 17.0 \pm 1.2 \pm 2.6)^{\circ} . & & \delta_{B}\left(D \pi^{-}\right)=\left(294_{-11}^{+9.7}\right)^{\circ}
\end{array}
$$

- Large r_{B} observed now, so if future Belle ll's data favor the w.a. r_{B}, the ϕ_{3} 's precision will be worse a bit with same data size.

Some discussion about ϕ_{3} combination

- We're working on the combination. Plan to release at CKM conference at September 18-22, 2023.
- Now, let's discuss with all public information...
- From the golden channel

$$
\begin{aligned}
B^{+} & \rightarrow D h^{+}, D \rightarrow K_{S}^{0} h^{+} h^{-}(\text {JHEP 02(2022)063): } & & \text { Comparing to W.A.: [HFLAV] } \\
\phi_{3} & =(78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}, & & \phi_{3}=\left(65.9_{-3.5}^{+3.3}\right)^{\circ} \\
r_{B}^{D K} & =0.129 \pm 0.024 \pm 0.001 \pm 0.002, & & r_{B}\left(D K^{-}\right)=(0.0994 \pm 0.0026) \\
\delta_{B}^{D K} & =(124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ}, & & \delta_{B}\left(D K^{-}\right)=\left(127.7_{-3.9}^{+3.6}\right)^{\circ} \\
r_{B}^{D \pi} & =0.017 \pm 0.006 \pm 0.001 \pm 0.001, & & r_{B}\left(D \pi^{-}\right)=(0.0049 \pm 0.0006) \\
\delta_{B}^{D \pi} & =(341.0 \pm 17.0 \pm 1.2 \pm 2.6)^{\circ} . & & \delta_{B}\left(D \pi^{-}\right)=\left(294_{-11}^{+9.7}\right)^{\circ}
\end{aligned}
$$

- $\left(\delta_{B}(D \pi)+\delta_{D}\right) \sim 180^{\circ}, \cos \left(\delta_{B}(D \pi)+\delta_{D}\right)$'s uncertainty is much smaller than expected -> unexpected precision from ADS method. Not true anymore with w.a. $\delta_{B}(D \pi)$.

Updates expect in near future

$B^{+} \rightarrow D h^{+}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}\left(\left(5.7_{-8.8}^{+10.2} \pm 3.5 \pm 5.7\right)^{\circ}\right)$, currently only CLEO's ci,si, binning scheme is available, which is not optimized for ϕ_{3}.
Large Br: 5.2\%; $F_{+} \sim 0.3, \sum c_{i} \sqrt{T_{i} \bar{T}_{i}} \sim-0.2$

We expect an optimized binning scheme and a precise ci/si from BESIII's 8fb-1 (~ 10 times than CLEO's).
Expect a more "normal" result from this channel.

By Toy MC, @50/ab, from $B^{+} \rightarrow D h^{+}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$,

- with current Ti/ci/si, ~5
- With Kspipi's Ti/ci/si, $\sim 2^{\circ}$

Updates expect in future

Extra channels: (https://confluence.desy.de/display/BI/Physics+BtoCharm)
$B^{+} \rightarrow D h^{+}, D \rightarrow K_{L} \pi^{+} \pi^{-}$: Unique to Belle/Bellell
~6 @50/ab; may better with optimized bins
$B^{+} \rightarrow D h^{+}, D \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$: BESIII tells the local informatinn
$B^{+} \rightarrow D h^{+}, D \rightarrow K^{-} K^{+} \pi^{0} / \pi^{-} \pi^{+} \pi^{0}: \overline{\text { BESIIII will measure the local information. }}$
$B^{+} \rightarrow D h^{+}, D \rightarrow \pi^{-} \pi^{+} \pi^{0} \pi^{0}$: Belle/Bellell's advantage
$B^{+} \rightarrow D h^{+}, D \rightarrow K^{-} \pi^{+} \pi^{0}$: local information? Will also be helpful for mixing study.

New novel methods when we have $20 a b^{-1}$?
Un-binned way (Fourier analysis) in $B^{+} \rightarrow D h^{+}, D \rightarrow K_{S} \pi^{+} \pi^{-}$[Eur.Phys.J.C 78 (2018) 2, 121]
Combined fit between B data and charm data (BESIII). (LHCb are doing it now.)

Determine hadronic parameter independently?

Measure $r_{B}^{D K}$ solo? Now in all methods, we determine $r_{B}^{D K}, \delta_{B}^{D K}, \phi_{3}$ simultaneously. And we know the ϕ_{3} 's precision highly depends on $r_{B}^{D K}$'s value. Can we determine $r_{B}^{D K}$ solo? Will be an important extra constrain on ϕ_{3} !

Experimentally: $\mathrm{N}\left(B^{+} \rightarrow D^{0} K^{+}, D^{0} \rightarrow K^{-} e^{+} \nu_{e}\right) / \mathrm{N}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}, \bar{D}^{0} \rightarrow K^{+} e^{-} \bar{\nu}_{e}\right)$,
Rough estimation: for CF channel: $\mathrm{N}($ raw $) / 1 a b^{-1} \sim 6500$

- If use hadronic tag (FEI): eff $\sim 0.2 \%$? N(CF) ~ 600 at $50 a b^{-1}$

$\cos \theta_{B Y}=\frac{2 E_{B}^{*} E_{Y}^{*}-M_{B}^{2}-m_{Y}^{2}}{2 p_{B}^{*} p_{Y}^{*}}$
- Untag? Fit $\cos \theta_{B Y}$, like semi-leptonic study. Maybe more difficult, due to small $\mathrm{p}\left(\nu_{e}\right)$. $N(C F) \sim 60000$ at $50 a b^{-1}, 4 \%$ precision? Won't be useful.

More idea? In paper arXiv:1606.09129, they use branching ratios and $r_{B}^{D K}$ to determine $r_{B}^{D \pi}$ with $\operatorname{SU}(3)$ symmetry.

(Before summary) why Belle II still work on ϕ_{3} ?

- Almost all channels are full reconstructed. LHCb is a monster...
- ϕ_{3} is a basic parameter, as another B-factory, we must give our ϕ_{3}, to confirm LHCb's ϕ_{3}.

(Before summary) why Belle II still work on ϕ_{3} ?

- Almost all channels are full reconstructed. LHCb is a monster...
- ϕ_{3} is a basic parameter, as another B-factory, we must give our ϕ_{3}, to confirm LHCb's ϕ_{3}.
- LHCb has interesting ϕ_{3} in some channels. $\longrightarrow>$ Need Belle Il's crosscheck.

Model-dependent $K^{+} K^{-} \pi^{+} \pi^{-}$ [Eur. Phys. J. C83 (2023) 547]

(Before summary) why Belle II still work on ϕ_{3} ?

- Almost all channels are full reconstructed. LHCb is a monster...

- Still a chance to show same sensitivity to ϕ_{3} !

Summary

- Review the γ / ϕ_{3} measurement at Belle (II). Discuss about combination of γ / ϕ_{3} (CKM conference 2023).
- For future, important channels:
- $B^{+} \rightarrow D h^{+}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$, need wait BESIII's new binning scheme and ci/si
- $B^{+} \rightarrow D h^{+}, D \rightarrow h^{+} h^{-} \pi^{0}$, BESIII may have local information few years later
- $B^{+} \rightarrow D h^{+}, D \rightarrow K_{L}^{0} \pi^{+} \pi^{-}$, Belle II's unique channel.
- $B^{+} \rightarrow D h^{+}, D \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$, Belle Il's advantage.
- $B^{+} \rightarrow D h^{+}, D \rightarrow K^{-} \pi^{+} \pi^{0}$: local information? Will also be helpful for mixing study
- This CKM angle γ / ϕ_{3} is not only B factory's task, also need BESIII's contribution.
- Let's make γ / ϕ_{3} a candle parameter!

Back-Up

Introduction -Sudden beam loss

Sudden beam loss:

- Fast beam loss within three or four turns (1 turn ~10 $\mu \mathrm{s}$)
- Reasons remain unknown
- More likely occurred in LER.

Effects of Sudden beam loss

- Caused severe damage to the vertical collimators
- Caused quenches of final focusing magnets (QCS)
- Resulted in large radiation doses around the interaction region (IR)
- limited the maximum bunch current

Discussion -- possible cause of Sudden Beam Loss

Can not be attributed to conventional beam

 instabilities: too fast (less than 3-4 turns) and no beam instabilities observedMay not be due to Beam-dust interaction:
examined in simulation, in which the beam particles are lost mainly at the horizontal collimators while what we observed is mainly at vertical collimators.

$$
\begin{aligned}
d \Gamma_{B^{ \pm}}(\mathbf{x})= & A_{(\pm, \mp)}^{2}+r_{B}^{2} A_{(\mp, \pm)}^{2} \\
& +2 A_{(\pm, \mp)} A_{(\mp, \pm)}[\underbrace{r_{B} \cos \left(\delta_{B} \pm \gamma\right)}_{x_{ \pm}} \underbrace{\cos \left(\delta_{D(\pm, \mp)}\right)}_{c_{i}}+\underbrace{r_{B} \sin \left(\delta_{B} \pm \gamma\right)}_{y_{ \pm}} \underbrace{\sin \left(\delta_{D(\pm, \mp)}\right)}_{s_{i}}]
\end{aligned}
$$

$$
\begin{aligned}
& N_{i}^{+}=h_{B^{+}}\left[F_{-i}+\left\{\left(x_{+}^{D K}\right)^{2}+\left(y_{+}^{D K}\right)^{2}\right\} F_{i}+2 \sqrt{F_{i} F_{-i}}\left(x_{+}^{D K} c_{i}-y_{+}^{D K} s_{i}\right)\right], \\
& N_{-i}^{+}=h_{B^{+}}\left[F_{i}+\left\{\left(x_{+}^{D K}\right)^{2}+\left(y_{+}^{D K}\right)^{2}\right\} F_{-i}+2 \sqrt{F_{i} F_{-i}}\left(x_{+}^{D K} c_{i}+y_{+}^{D K} s_{i}\right)\right], \\
& N_{i}^{-}=h_{B^{-}}\left[F_{i}+\left\{\left(x_{-}^{D K}\right)^{2}+\left(y_{-}^{D K}\right)^{2}\right\} F_{-i}+2 \sqrt{F_{i} F_{-i}}\left(x_{-}^{D K} c_{i}+y_{-}^{D K} s_{i}\right)\right], \\
& N_{-i}^{-}=h_{B^{-}}\left[F_{-i}+\left\{\left(x_{-}^{D K}\right)^{2}+\left(y_{-}^{D K}\right)^{2}\right\} F_{i}+2 \sqrt{F_{i} F_{-i}}\left(x_{-}^{D K} c_{i}-y_{-}^{D K} s_{i}\right)\right],
\end{aligned}
$$

5×10^{-9}, and the small size of the interference, proportional to $r_{B} \approx c_{F}\left|V_{c s} V_{u b}^{*}\right| /\left|V_{u s} V_{c b}^{*}\right| \approx 0.1$, where $c_{F} \approx 0.2$ is a color suppression factor [11-13]. Therefore a pre-

