From the pion to the dipion light-cone distribution amplitudes and the phenomena

Shan Cheng (HNU)

arXiv:2209.13312, Jian Chai, SC and Jun Hua arXiv:2007.05550, SC, A. Khodjamirian and A V. Rusov arXiv:1901.06071, SC

Seminar at University of Science and Technology of China June 21, 2023, Hefei

Overview

(1) Motivation

- Light-cone distribution amplitudes
(2) Pion LCDAs from the form factors
- Modulus representation of dispersion relation
- Data-driven extracting of a_{n}^{π} and m_{0}^{π}
(3) Dipion LCDAs and the phenomena
- Double expansion and the coefficient $B_{n \prime}^{(I)}(s)$
- $B \rightarrow(\rho \rightarrow) \pi \pi$ and $D_{s} \rightarrow\left(f_{0} \rightarrow\right)[\pi \pi]_{\mathrm{S}}$ form factors

4) Conclusion

Motivation

- Among the general coordinate transformations of the 4-dimensional Minkowski space that conserve the interval $d s^{2}=g_{\mu \nu}(x) d x^{\mu} d x^{\nu}$, there are transformations only change the scale of the metric $g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\omega(x) g_{\mu \nu}(x)$ and, consequently, preserve the angles and leave the light-cone invariant.
- conformal transformation correspond to a genaralization of the usual Poincaré group \triangle the conformal algebra in four-dimension has 15 generators: translations \mathbf{P}_{μ}, Lorentz rotation $\mathbf{M}_{\mu \nu}$, dilatation \mathbf{D} and special conformal translation $\mathbf{K}_{\mu}, \quad \triangle 10$-parameter Lie algebra of the Poincaré group: $\mathbf{P}_{\mu}, \mathbf{M}_{\mu \nu}$
\dagger examples \triangle dilatation (global scale transformation) $x^{\mu} \rightarrow x^{\prime \mu}=\lambda x^{\mu}$ and inversion $x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu} / x^{2}$ \triangle special conformal transformation (sequential inversion) $x^{\mu} \rightarrow x^{\prime \mu}=\left(x^{\mu}+a^{\mu} x^{2}\right) /\left(1+2 a \cdot x+a^{2} x^{2}\right)$
- the generators act on a generic fundamental field $\Phi(x)$ with an arbitrary spin

$$
\begin{array}{ll}
\delta_{P}^{\mu} \equiv i\left[\mathbf{P}^{\mu}, \Phi(x)\right]=\partial^{\mu} \Phi(x), & i\left[\mathbf{M}^{\mu \nu}, \Phi(x)\right]=\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}-\Sigma^{\mu \nu}\right) \Phi(x), \\
i[\mathbf{D}, \Phi(x)]=(x \cdot \partial+I) \Phi(x), & i\left[\mathbf{K}^{\mu}, \Phi(x)\right]=\left(2 x^{\mu} x \cdot \partial+x^{2} \partial^{\mu}+21 x^{\mu}-2 x_{\nu} \Sigma^{\mu \nu}\right) \Phi(x) .
\end{array}
$$

$\triangle \Sigma^{\mu \nu}$ is the generator of spin rotations: $\Sigma^{\mu \nu} \phi=0, \Sigma^{\mu \nu} \psi=1 / 2 \sigma^{\mu \nu} \psi, \Sigma^{\mu \nu} A^{\alpha}=g^{\nu \alpha} A^{\mu}-g^{\mu \alpha} A^{\nu}$
$\triangle I$ is the scaling dimension which specifies the field transformation under the dilatations, $\Delta I=I^{\text {can }}$ in the free theory (classical level) \Leftarrow the action of the theory is dimensionless, $\quad \triangle I \neq I^{\text {can }}$ in the quantum theory, called the anomalous dimension)

Motivation

- an ultra-relativistic particle (quark or gluon) propagates close to the light-cone
- introduce the projections on the two independent light-like vectors n_{μ}, \bar{n}_{μ}
$\triangle A_{\mu}, \quad A_{+}=A_{\mu} n^{\mu}, A_{-}=A_{\mu} \bar{n}^{\mu}, A^{2}=2 A_{+} A_{-}-A_{\perp}^{2}, \quad \Delta g_{\perp}^{\mu \mu}=g^{\mu \nu}-n^{\mu} \bar{n}^{\nu}-n^{\nu} \bar{n}^{\mu}$
- consider the special conformal transformation with $a_{\mu}=a \bar{n}_{\mu}$
\triangle then $x_{-} \rightarrow x_{-}^{\prime}=x_{-} /\left(1+2 a x_{-}\right)$, this transformation map the light-ray in the x_{-}direction into itself
Δ together with the translations and dilatations along the same direction, $x_{-} \rightarrow x_{-}+c, x_{-} \rightarrow \lambda x_{-}$, form a collinear subgroup ($S L(2, R)$) of the full conformal group
- in the parton model, hadrons states are replaced by a bunch of collinear partons $\left(\bar{n}_{\mu}\right)$, only to consider the quantum field "living" on the light-ray $\Phi(x) \rightarrow \Phi(\alpha n)$
- conformal group is reduced to the collinear subgroup that generates projective transformation on the line

$$
\alpha \rightarrow \alpha^{\prime}=\frac{a \alpha+b}{c \alpha+d}, a d-b c=1 ; \quad \Phi(\alpha) \rightarrow \Phi^{\prime}(\alpha)=(c \alpha+d)^{-2 j} \Phi\left(\frac{a \alpha+b}{c \alpha+d}\right), j=\frac{l+s}{2} .
$$

\triangle generated by the four generators $\mathbf{P}_{+}, \mathbf{M}_{-+}, \mathbf{D}$, and \mathbf{K}_{-}, a collinear subalgebra of the conformal algebra \triangle introduce $\mathbf{L}_{ \pm}=\mathbf{L}_{1} \pm i \mathbf{L}_{2}=-i \mathbf{P}_{+}\left(\mathbf{K}_{-} / 2\right), \mathbf{L}_{0}(\mathbf{E})=i / 2\left(\mathbf{D} \pm \mathbf{M}_{-+}\right)$satisfying $\left[\mathbf{L}_{0}, \mathbf{L}_{\mp}\right]=\mp \mathbf{L}_{\mp}$ and $\left[\mathbf{L}_{-}, \mathbf{L}_{+}\right]=-2 \mathbf{L}_{0}$
\triangle obtain $\left[\mathbf{L}_{ \pm}, \Phi(\alpha)\right]=-\partial_{\alpha}\left(\alpha^{2} \partial_{\alpha}+2 j_{\alpha}\right) \Phi(\alpha)=L_{ \pm} \Phi(\alpha)$ and $\left[\mathbf{L}_{0}, \Phi(\alpha)\right]=\left(\alpha \partial_{\alpha}+j\right) \Phi(\alpha)=L_{0} \Phi(\alpha)$ satisfying $\left[L_{0}, L_{\mp}\right]= \pm L_{\mp}$ and $\left[L_{-}, L_{+}\right]=2 L_{0} \quad \triangle$ the algebra of $S L(2, R) \sim O(2,1)$

- another subgroup corresponding to trans. of the 2-dimensional transverse plane

Motivation-LCDA

- the remaining generator \mathbf{E} count the collinear twist of the field Φ
$\triangle[\mathbf{E}, \Phi(\alpha)]=(I-s) / 2 \Phi(\alpha), \quad \triangle$ commutes with all \mathbf{L}_{i}
- hadrons are described by LCDAs at different (collinear) twist, PDA, PDF
\triangle collinear twist: dimension - spin projection on the plus-direction \triangle geometric twist: dimension - spin
- ie.,$|\pi\rangle=\psi_{q \bar{q}}|q \bar{q}\rangle+\psi_{q \bar{q} g}|q \bar{q} g\rangle+\psi_{q \bar{q} q \bar{q}}|q \bar{q} q \bar{q}\rangle+\cdots$

$$
\psi_{\pi}^{n}\left(x_{i}, k_{\perp i}, \lambda_{i}\right)=\left\langle n, x_{i}, k_{\perp i}, \lambda_{i} \mid \pi\right\rangle
$$

\dagger large Q^{2}, k_{\perp} can been neglected/integrated $\psi_{\pi}^{n}\left(x_{i}, \lambda_{i}\right)$, separate out the spin to obtain the LCDA $\phi_{\pi}^{n}\left(x_{i}, Q\right)$
\dagger corrections $\mathcal{O}\left(k_{\perp}^{2} / Q^{2}, m^{2} / Q^{2}, \alpha_{s}\right)$, scale dependence, RGE with the general solution in terms of Gegenbauer polynomials. ie.,

$$
\begin{aligned}
& \text { leading twist } \quad \phi_{\pi}(x, \mu)=6 x(1-x) \sum_{n=0} a_{n}^{\pi}(\mu) C_{n}^{3 / 2}(x) \\
& \text { twist three } \quad \phi_{\pi}^{p}(x, \mu)=\frac{m_{0}^{\pi}(\mu)}{P^{+}}\left[1+30 \eta_{3 \pi} C_{2}^{1 / 2}(x)-3 \eta_{3 \pi} \omega_{3 \pi} C_{4}^{1 / 2}\right] \\
& \text { twist three } \quad \phi_{\pi}^{\sigma}(x)=\frac{m_{0}^{\pi}(\mu)}{P^{+}} 6 x(1-x)\left[1+5 \eta_{3 \pi} C_{2}^{3 / 2}\right]
\end{aligned}
$$

\triangle asymptotic behavior $a_{0}^{\pi}=f_{\pi}, \quad \triangle a_{n \geqslant 2}^{\pi}(\mu)$ and $m_{0}^{\pi}(\mu)$ are obtained by non-pert. theory/lattice QCD \triangle fine structure of pion (hadron), \triangle electromagnetic FFs, $B \rightarrow \pi \pi$; radiative and semileptonic decays \rightarrow NP

Motivation-LCDA- a_{2}^{π}

- status of a_{n}^{π} study

$$
\phi_{\pi}(x, \mu)=6 x(1-x) \sum_{n=0} a_{n}^{\pi}(\mu) C_{n}^{3 / 2}(x)
$$

\dagger in QCD $\quad a_{n}^{\pi}(\mu)=\langle\pi| q(z) \bar{q}(z)+z_{\rho} \partial_{\rho} q(z) \bar{q}(z)+\cdots|0\rangle$
\dagger LQCD: $a_{2}^{\pi}(1 \mathrm{GeV})=0.334 \pm 0.129$ [RBC\&UKQCD 2010], 0.135 ± 0.032 [RQCD 19]
$\triangle a_{4}^{\pi}$ is not available \leftarrow the growing number of derivatives in $q \bar{q}$ operator
\triangle new technique is being developed[RQCD 2017, 2018].
\dagger QCDSR: $a_{2}^{\pi}=0.19 \pm 0.06$ [Chernyak 1984], $0.26_{-0.09}^{+0.21}$ [Khodjamirian 2004], 0.28 ± 0.08 [Ball 06], \triangle nonlocal vacuum condensate is introduced and modeled for $a_{n>2}^{\pi}$ [Bakulev 2001]
\triangle QCD sum rules as an inverse problem[Li 2020, Yu 2022]

quark-hadron duality \rightarrow Legendre expansion of spectral density

\dagger LCSRs: data-driven
$\triangle F_{B \rightarrow \pi}: a_{2}^{\pi}=0.19 \pm 0.19$ [Ball 2005], 0.16 [Khodjamirian 2011], large error from B meson
$\triangle F_{\pi \gamma \gamma^{*}}: a_{2}^{\pi}=0.14[$ Agaev 2010] BABAR+CLEO, $0.10[$ Agaev 2012] Belle+CLEO, large uncertainty of $a_{n>2}^{\pi}$, discrepancy at large Q^{2}, BESIII ?
$\Delta F_{\pi}: a_{2}^{\pi}=0.24 \pm 0.17$ [Bebek 1978] Wilson Lab+NA7, 0.20 ± 0.03 [Agaev 2005] Wilson Lab+JLab, large uncertainty of $a_{n>2}^{\pi}$, precise measurement in the small transfers

Motivation-LCDA- m_{0}^{π}

- status of m_{0}^{π} study

$$
\phi_{\pi}^{p / \sigma}(x, \mu) \propto m_{0}^{\pi}(\mu) / P^{+}
$$

\dagger in QCD $\quad\left\langle\pi^{+}\right| \bar{u}(0)\left(-i \gamma_{5}\right) d(0)|0\rangle=f_{\pi} m_{0}^{\pi}(\mu), \quad m_{0}^{\pi}=m_{\pi}^{2} /\left(m_{u}+m_{d}\right)$
$\dagger m_{0}^{\pi}(1 \mathrm{GeV})=1.892 \mathrm{GeV}$ is obtained from $\chi \mathrm{PT}$ [Leutwyler, 1996]
$\dagger \phi_{\pi}^{p / \sigma}\left(m_{0}^{\pi}\right)$ are not involved in $F_{\pi}^{\text {LCSRs }}$ due to the chiral symmetry limit
\dagger give dominant contribution in $F_{\pi}^{\text {pQCD }}$ due to the chiral enhancement $\mathcal{O}\left(m_{0}^{\pi} / Q^{2}\right)$ \triangle usually chosen at a fixed value in the previous PQCD study

Table 1. Input of m_{0}^{π} in the previous pQCD calculations.

Physical quantity (Accuracy)	m_{0}^{π}	Refs
Pion EM FF (NLO, 2p, twist-3)	1.74	$[12-15]$
Pion EM FF (NLO, 3p, twist-3)	1.74	$[16]$
Pion EM FF (NLO, 3p, twist-4)	$1.90(1 \mathrm{GeV})$	$[9]$
$B \rightarrow \pi$ FF (LO, 3p)	1.4	$[17]$
$B \rightarrow \pi$ FF (twist-2 NLO, 2p)	$1.74_{-0.38}^{+0.67}$	$[18]$
$B \rightarrow \pi$ FF (twist-3 NLO, 2p)	1.4	$[19]$

\triangle maybe the largest error source of pQCD predictions of F_{π}
Δ the corresponding large uncertainty is formerly disregarded

Motivation-LCDA- F_{π}

- data-driven extraction of a_{2}^{π}, m_{0}^{π} from $F_{\pi}\left(q^{2}<0\right)$
$\dagger F_{\pi}^{\mathrm{LCSRs}}\left(q^{2}\right)$ is applicable when $q^{2} \in[-10,-1] \mathrm{GeV}^{2}$ [Braun 1994, 2000, Bijnens 02]

$$
F_{\pi}^{\mathrm{LCSRs}}\left(q^{2}\right)=F_{\pi}^{\mathrm{t} 2, \mathrm{LO}}+F_{\pi}^{\mathrm{t} 2, \mathrm{NLO}}+F_{\pi}^{\mathrm{t} 4, \mathrm{LO}}+F_{\pi}^{\mathrm{t} 6, \mathrm{LO}}
$$

$\dagger F_{\pi}^{\mathrm{pQCD}}\left(q^{2}\right)$ is applicable when $q^{2}<-10 \mathrm{GeV}^{2}[$ Li 2001, Li 12, SC 14]

$$
F_{\pi}^{\mathrm{pQCD}}\left(q^{2}\right)=F_{\pi}^{\mathrm{t} 2, \mathrm{LO}+\mathrm{NLO}}+F_{\pi}^{\mathrm{t} 3, \mathrm{LO}+\mathrm{NLO}}+F_{\pi}^{\mathrm{t} 2 \otimes \mathrm{t} 4, \mathrm{LO}}+F_{\pi}^{3 \mathrm{p}, \mathrm{LO}}
$$

\dagger data is only available in the resonant region $\left|q^{2}\right| \leqslant 2.5 \mathrm{GeV}^{2}$
\dagger the mismatch destroys the direct extracting programme from spacelike form factor Δ large errors $a_{n}>2$ terms become important in the intermediate and large transfers in LCSRs/powerlessness
\dagger timelike form factor $F_{\pi}\left(q^{2}>0\right)$ provides another opportunity
\triangle BABAR: $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma), \quad 4 m_{\pi}^{2} \leqslant q^{2} \lesssim 9 \mathrm{GeV}^{2}$ [BABAR 2012]
\triangle Belle: $\tau \rightarrow \pi \pi \nu_{\tau}, \quad 4 m_{\pi}^{2} \leqslant q^{2} \leqslant 3.125 \mathrm{GeV}^{2}$ [Belle 2008]
\triangle BESIII: $e^{+} e^{-}(\gamma) \rightarrow \pi^{+} \pi^{-}, \quad 0.6 \leqslant Q^{2} \leqslant 0.9 \mathrm{GeV}^{2}$ with ISR[BESIII 2016]

- timelike measurement and spacelike predictions are related by dispersion relation

Pion LCDAs from the form factors

Dispersion relation

- dispersion relation is written in the integral over invariant mass $\left[4 m_{\pi}^{2}, \infty\right)$
- the standard dispersion relation

$$
F_{\pi}\left(q^{2}<0\right)=\frac{1}{\pi} \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} F_{\pi}(s)}{s-q^{2}-i \epsilon}
$$

\dagger the measurement is $\left|F_{\pi}(s)\right|^{2}$ rather than $\operatorname{Im} F_{\pi}(s)$
\dagger model dependence in $F_{\pi}^{\text {data }}(s)$ parameterization to reproduce $\left|F_{\pi}^{\text {data }}(s)\right|$
\dagger vector dominate model (VDM) to parameterize the data[BABAR 2012]

$$
\begin{aligned}
& F_{\pi}^{\text {data }}(s)=\sum_{n=0, \cdots}^{N} \frac{c_{n}^{\pi} B W_{\rho_{n}}^{G S}(s)}{c_{n}^{\pi}}, \quad c_{0}^{\pi} \rightarrow \frac{1+c_{\omega}^{\pi} B W_{\omega}^{K S}(s)}{1+c_{\omega}^{\pi}}, \\
& B W_{\rho_{n}}^{G S}(s)=\frac{m_{n}^{2}+m_{n} \Gamma_{n} d\left(m_{n}\right)}{m_{n}^{2}-s+f(s)-i \sqrt{s} \Gamma_{n}(s)}, \quad B W_{\omega}^{K S}(s)=\frac{m_{\omega}^{2}}{m_{\omega}^{2}-s-i m_{\omega} \Gamma_{\omega}}
\end{aligned}
$$

\triangle Gounaris-Sakuria and Kühn-Santamaria representations[Gounaris 1968, Kühn 1990]
$\triangle N=4 \& \rho-\omega$ interaction, the data is described by 18 parameters
\dagger The application of $F_{\pi}^{\text {data }}(s)$ at high energy tails is not physical
\triangle resonances above $N=4$ are not included, $\triangle F_{\pi}^{\text {data }}(s \rightarrow \infty) \nrightarrow 1 / s$

Dispersion relation-modulus representation

- the modulus representation of dispersion relation[SC, A. Khodjamirian and A. Rosov 2020]

$$
\begin{array}{r}
\frac{\ln F_{\pi}\left(q^{2}\right)}{q^{2} \sqrt{s_{0}-q^{2}}}=\frac{1}{2 \pi} \int_{s_{0}}^{\infty} \frac{d s \ln \left|F_{\pi}(s)\right|^{2}}{s \sqrt{s-s_{0}}\left(s-q^{2}\right)}, \\
\Downarrow \quad q^{2}<s_{0} \\
\Downarrow \quad F_{\pi}\left(q^{2}\right)=\exp \left[\frac{q^{2} \sqrt{s_{0}-q^{2}}}{2 \pi} \int_{s_{0}}^{\infty} \frac{d s \ln \left|F_{\pi}(s)\right|^{2}}{s \sqrt{s-s_{0}}\left(s-q^{2}\right)}\right],
\end{array} q^{2}<s_{0}
$$

\dagger introduce an auxiliary function[Geshkenbein 1998]

$$
g_{\pi}\left(q^{2}\right) \equiv \frac{\ln F_{\pi}\left(q^{2}\right)}{q^{2} \sqrt{s_{0}-q^{2}}}
$$

\dagger implement Cauchy theorem and Schwartz reflection principle on g_{π}
\dagger the only assumption in the derivation: $F_{\pi}\left(q^{2}\right)$ is free from zeros in the complex q^{2} plane, then $\ln F_{\pi}\left(q^{2}\right)$ does not diverge[Leutwyler 2002, Ananthanarayan 2011]
Δ if $F_{\pi}\left(q^{2}\right)$ has zeros in the complex q^{2} plane, deserves a separate analysis [Dominguez 2001, Ananthanarayan 2004]
$\triangle F_{\pi}\left(q^{2}\right)$ evaluated by the standard and modulus DR have a tiny difference
\rightarrow the zeros of $F_{\pi}\left(q^{2}\right)$ are either absent or their influence is beyond our accuracy

Timelike FF from data and dual-resonance model

$$
\begin{gathered}
F_{\pi}\left(q^{2}\right)=\exp \left[\frac{q^{2} \sqrt{s_{0}-q^{2}}}{2 \pi} \int_{s_{0}}^{\infty} \frac{d s \ln \left|F_{\pi}(s)\right|^{2}}{s \sqrt{s-s_{0}}\left(s-q^{2}\right)}\right], \quad q^{2}<s_{0} \\
\left|F_{\pi}(s)\right|=\Theta\left(s_{\max }-s\right)\left|F_{\pi}^{\text {(data) }}(s)\right|+\Theta\left(s-s_{\max }\right)\left|F_{\pi}^{\text {(tail) }}(s)\right|
\end{gathered}
$$

- the dual-resonance models with $N_{c}=\infty$ limit of QCD [Dominguez 2002, Bruch 2004]

$$
F_{\pi}^{(\text {tail })}(s)=F_{\pi}^{(d Q C D)}(s)=\sum_{n=0}^{\infty} c_{n} B W_{n}(s), \quad c_{n}=\frac{(-1)^{n} \Gamma(\beta-1 / 2)}{\alpha^{\prime} m_{n}^{2} \sqrt{\pi} \Gamma(n+1) \Gamma(\beta-1-n)}, \quad B W_{n}(s)=B W_{n}^{K S}(s)
$$

$\Delta m_{n}^{2}=m_{\rho}^{2}(1+2 n), \alpha^{\prime}=1 / 2 m_{\rho}^{2}, \Gamma_{n}=\gamma m_{n}, \gamma=0.193$ is adjusted to the total width of $\rho(770)$
\triangle Matching $\left|F_{\pi}^{(\text {data })}\left(s_{\max }\right)\right|=\left|F_{\pi}^{(\text {tail })}\left(s_{\max }\right)\right|$ indicates $\beta=2.09 \pm 0.13$
Δ reproduce $F_{\pi}^{(\mathrm{dQCD})}(0)=1$ and $\lim _{s \rightarrow-\infty} F_{\pi}^{(\mathrm{dQCD})}(s) \sim 1 / s^{\beta-1}$

Spacelike FF from LCSRs

- LCSRs prediction of $F_{\pi}\left(q^{2}\right) \quad \phi_{\pi}(x, \mu)=6 x(1-x) \sum_{n=0} a_{n}^{\pi}(\mu) C_{n}^{3 / 2}(x)$
\triangle energetic pion [Braun 1999, Bijnens 2002]

$$
\begin{aligned}
& F_{\pi}^{(\mathrm{LCSR})}\left(Q^{2}\right)=F_{\pi}^{(\mathrm{as})}\left(Q^{2}\right)+\sum_{n=2,4, . .} a_{n}\left(\mu_{0}\right) f_{n}\left(Q^{2}, \mu, \mu_{0}\right) \\
& F_{\pi}^{(\mathrm{as})}\left(Q^{2}\right)=F_{\pi}^{(\mathrm{tw} 2, \mathrm{as})}\left(Q^{2}\right)+F_{\pi}^{(\mathrm{tw} 4, \mathrm{LO})}\left(Q^{2}\right)+F_{\pi}^{(\mathrm{tw} 6, \mathrm{fact})}\left(Q^{2}\right)
\end{aligned}
$$

Δf_{n} is the integral of Gegenbauer polynomials with the Borel exponent
Δ soft dynamics dominated, one quark carries almost the whole momentum
$\triangle F_{\pi}^{\mathrm{LCSRs}}\left(q^{2}\right)$ in terms of LCDAs, Gegenbauer moments dependence
\triangle leading asymptotic term reproduces the asymptotic pQCD behavior

$\triangle F_{\pi}^{(\mathrm{disp})}\left(q^{2}\right)=\exp \left[\frac{q^{2} \sqrt{s_{0}-q^{2}}}{2 \pi} \int_{s_{0}}^{\infty} \frac{d s \ln \left|F_{\pi}(s)\right|^{2}}{s \sqrt{s-s_{0}}\left(s-q^{2}\right)}\right]$
\triangle significant gap between $F_{\pi}^{(\text {disp })}$ and $F_{\pi}^{(\text {as })}$
\triangle the $2 n d$ term $\propto a_{n}$ gives significant effect

Result of a_{n}^{π} and $F_{\pi}\left(q^{2}\right)$

- χ^{2} fit to reveal the more inner structures of pion meson

$$
\chi^{2}=\sum_{i=1}^{N_{p}} \frac{1}{\sigma_{i}^{2}}\left[\sum_{n=2,4, . .}^{n_{\max }} a_{n}\left(\mu_{0}\right) f_{n}\left(Q_{i}^{2}, \mu_{0}\right)+F_{\pi}^{(\text {as })}\left(Q_{i}^{2}\right)-F_{\pi}^{(\mathrm{disp})}\left(Q_{i}^{2}\right)\right]^{2}
$$

Model	$a_{2}(1 \mathrm{GeV})$	$a_{4}(1 \mathrm{GeV})$	$a_{6}(1 \mathrm{GeV})$	$\chi_{\text {min }}^{2} / \mathrm{ndf}$
$\left\{a_{2}\right\}$	0.302 ± 0.046			4.08
$\left\{a_{2}, a_{4}\right\}$	0.279 ± 0.047	0.189 ± 0.060		0.75
$\left\{a_{2}, a_{4}, a_{6}\right\}$	0.270 ± 0.047	0.179 ± 0.060	0.123 ± 0.086	0.073

$\triangle\left|F_{\pi}(s)\right| \sim\left|F_{\pi}^{(\operatorname{disp})}\left(\left|q^{2}\right|\right)\right|$ at $\left|\sqrt{q^{2}}\right| \gtrsim 3 \mathrm{GeV}$, manifests analyticity of the modulus representation

Timelike FF from data and pQCD

$$
\begin{aligned}
F_{\pi}\left(q^{2}\right) & =\exp \left[\frac{q^{2} \sqrt{s_{0}-q^{2}}}{2 \pi} \int_{s_{0}}^{\infty} \frac{d s \ln \left|F_{\pi}(s)\right|^{2}}{s \sqrt{s-s_{0}}\left(s-q^{2}\right)}\right], \quad q^{2}<s_{0} \\
\left|F_{\pi}(s)\right| & =\Theta\left(s_{\max }-s\right)\left|F_{\pi, \text { Inter }}^{(\text {data }}(s)\right|+\Theta\left(s-s_{\max }\right)\left|F_{\pi}^{(\mathrm{pQCD})}(s)\right|
\end{aligned}
$$

- interpolating the data with evenly distribution under the interval 0.01 GeV
\triangle data sample densities are roughly $0.01 \mathrm{GeV}, 0.002 \mathrm{GeV}$ and 0.1 GeV in the near resonances, resonances located and away resonances regions, respectively
- pQCD prediction of high energy tail[SC 2019]
\triangle An unique advantage of pQCD is that the high energy tail can be directly calculated by perturbative theorem
\dagger pQCD calculation based on k_{T} factorization theory (take spacelike FF for example)

$$
\begin{aligned}
& \left\langle\pi^{-}\left(p_{2}\right)\right| J_{\mu}^{\mathrm{em}}\left|\pi^{-}\left(p_{1}\right)\right\rangle=\oint d z_{1} d z_{2} H_{\gamma \beta \alpha \delta}^{i j k l}\left(z_{2}, z_{1}\right)\left\langle\pi^{-}\left(p_{2}\right)\right|\left\{\bar{d}_{\gamma}\left(z_{2}\right) e^{\left.\left[i g_{s} \int_{0}^{z_{2} d \sigma_{\nu^{\prime}} A_{\nu^{\prime}}(\sigma)}\right]_{u_{\beta}(0)}\right\}_{k j}|0\rangle_{\mu_{t}}, ~}\right. \\
& \langle 0|\left\{\bar{u}_{\alpha}(0) e^{\left.\left[i g_{s} \int_{z_{1}}^{0} d \sigma_{\nu} A_{\nu}(\sigma)\right]_{d_{\delta}\left(z_{1}\right)}\right\}_{\text {il }}\left|\pi^{-}\left(p_{1}\right)\right\rangle_{\mu_{t}}, ~}\right.
\end{aligned}
$$

\triangle Seperation: SD (propagator) and LD (Heisenberg operator) \triangle Hard kernel and nonlocal MEs \Leftarrow spin structures (Fierz trans.) $\quad \triangle$ nonlocal MEs, defined in terms of LCDAs by twist $\quad \triangle$ Truncated (factorizable) scale μ_{t}

FFs from pQCD

\dagger hard kernel associated with the lowest Fock state

$$
H_{\gamma \beta \alpha \delta}^{i j k l}\left(z_{1}, z_{2}\right)=(-1)\left[i g_{s} \gamma_{m}\right]_{\alpha \beta} T^{i j}\left[\left(i e_{q} \gamma_{\mu}\right) S_{0}\left(0-z_{1}\right)\left(i g_{s} \gamma_{n}\right)\right]_{\gamma \delta} T^{k l}\left[-i D_{m n}^{0}\left(z_{1}-z_{2}\right)\right]
$$

\dagger the free propagators in the coordinate space

$$
S_{0}(z)=\frac{i}{2 \pi} \frac{\neq}{z^{4}}, \quad D_{m n}^{0}(z)=\frac{1}{4 \pi} \frac{g_{m n}}{z^{2}}
$$

\dagger about the nonlocal MEs, different spin structures (LCDAs at different twists)

$$
\begin{aligned}
\langle 0|\left\{\bar{u}_{\alpha}\left(z_{1}\right)\left[z_{1}, 0\right] d_{\delta}(0)\right\}_{i l} \mid & \left.\pi^{-}\left(p_{1}\right)\right\rangle_{\mu_{t}}=\frac{\delta_{i l}}{3}\left\{\frac{1}{4}\left(\gamma_{5} \gamma^{\rho}\right)_{\delta \alpha}\langle 0| \bar{u}\left(z_{1}\right)\left[z_{1}, 0\right]\left(\gamma_{\rho} \gamma_{5}\right) d(0)\left|\pi^{-}\left(p_{1}\right)\right\rangle_{\mu_{t}}\right. \\
& \left.+\frac{1}{8}\left(\sigma^{\tau \tau^{\prime}} \gamma_{5}\right)_{\delta \alpha}\langle 0| \bar{u}\left(z_{1}\right)\left[z_{1}, 0\right]\left(i \sigma_{\tau \tau^{\prime}} \gamma_{5}\right) d(0)\left|\pi^{-}\left(p_{1}\right)\right\rangle_{\mu_{t}}+\cdots\right\}
\end{aligned}
$$

\dagger high Fock states contribution, like three particle configuration $q \bar{q} g$
\dagger pQCD prediction can be arranged as

$$
\begin{array}{r}
\mathcal{F}_{\pi}^{\mathrm{pQCD}}\left(q^{2}\right)=\left(m_{0}^{\pi}\right)^{2} F_{1}\left(q^{2}\right)+m_{0}^{\pi} F_{2}\left(q^{2}\right)+F_{3}\left(q^{2}\right) \\
+m_{0}^{\pi} a_{2}^{\pi} F_{4}\left(q^{2}\right)+a_{2}^{\pi} F_{5}\left(q^{2}\right)+\left(a_{2}^{\pi}\right)^{2} F_{6}\left(q^{2}\right)
\end{array}
$$

Δ the function F_{3} collects the contributions from the asymptotic term and partial high twists terms \triangle power hiearachy between different terms, like $\left(m_{0}^{\pi}\right)^{2} F_{1}>m_{0}^{\pi} F_{2}\left(q^{2}\right)>F_{3}\left(q^{2}\right) \ldots$

Result of m_{0}^{π}, a_{n}^{π} and $F_{\pi}\left(q^{2}\right)$

\triangle timelike (left) and spacelike (right) form factors
\triangle the pQCD predictions are obtained by taking $m_{0}^{\pi}(1 \mathrm{GeV})=1.6 \pm 0.4 \mathrm{GeV}$ and $a_{2}^{\pi}(1 \mathrm{GeV})=0.25 \pm 0.25$
Δ the effect from the scale evolutions are also taken in to account
$\dagger F_{\pi, t 2+33}^{p Q C D}(s)$ marries with the data at the intermediate regions within uncertainty
\dagger the chiral enhancement effect is significant $\quad \Delta$ the large gap between $F_{\pi, t 2}^{p Q C D}$ and $F_{\pi}^{D R}$
\dagger high energy tail gives large contribution to $F_{\pi}^{\mathrm{DR}}\left(Q^{2}\right)$, especially in the large q^{2}
Δ the logarithm expression of the timelike FF strengthens the role of high energy tail in the dispersion relation
\dagger the fit of $F_{\pi}^{p Q C D}$ with $F_{\pi}^{D R}$ can not arrive at a good result of a_{2}^{π}, but m_{0}^{π}
\triangle the uncertainty of $F_{\pi}^{D R 1}$ is larger than the leading twist pQCD prediction

Result of m_{0}^{π}, a_{n}^{π} and $F_{\pi}\left(q^{2}\right)$

- χ^{2} fit to reveal the more inner structures of pion meson

$$
\chi^{2}=\sum_{i=1}^{11} \frac{\left[\mathcal{F}_{\pi}^{\mathrm{DR} 2}\left(Q_{i}^{2}\right)-\mathcal{F}_{\pi}^{\mathrm{pQCD}}\left(Q_{i}^{2}\right)\right]^{2}}{\left[\delta \mathcal{F}_{\pi}^{\mathrm{DR} 2}\left(Q_{i}^{2}\right)\right]^{2}}
$$

\triangle iteration with the initial inputs $m_{0}^{\pi}(1 \mathrm{GeV})=1.6 \pm 0.4 \mathrm{GeV}, a_{2}^{\pi}(1 \mathrm{GeV})=0.25 \pm 0.25$

Scenario	I	II
$m_{0}^{\pi}(\mathrm{GeV})$	$1.37_{-0.32}^{+0.29}$	$1.31_{-0.30}^{+0.27}$
a_{2}^{π}	0.25 ± 0.25	0.23 ± 0.25

\triangle fitting results of m_{0}^{π} and a_{2}^{π} at the default scale 1 GeV
Δ Scenario I (II) represents the fit with(out) considering the scale running of nonperturbative parameters

- about the first gegenbauer coefficient a_{2}^{π}
\dagger LQCD: $0.334 \pm 0.129\left[\right.$ UKQCD 2010], $0.155 \pm 0.035\left[\right.$ RQCD 2019], $0.258_{-0.052}^{+0.079}[$ LPC 2022]
\dagger data-driven determination from pion from factor: 0.279 ± 0.047 [SC 2020]
$\dagger F_{\pi \gamma \gamma^{*}}$ is theoretical clear, measurements are discrepant from BABAR and Belle \dagger settle down with the foresee Belle-II and BESIII measurements?

Result of m_{0}^{π}, a_{n}^{π} and $F_{\pi}\left(q^{2}\right)$

\dagger with the new result as inputs[Jian Chai, SC and Jun Hua 20221

\dagger power hiearachy $\left(m_{0}^{\pi}\right)^{2} F_{1}>m_{0}^{\pi} F_{2}\left(q^{2}\right)>F_{3}\left(q^{2}\right) \cdots$
\dagger pQCD consists with BABAR data in the intermediate region much better
\dagger a good agreement in the large recoiled region $[-1,0] \mathrm{GeV}^{2}$ within uncertainties

DiPion LCDAs and the phenomena

Why dipion LCDAs ?

- CKM matrix is a crucial criterion of the Standard Model[PDG 2022]
- long standing $\left|V_{u b}\right|$ tension
$\dagger\left|V_{u b}\right|=(3.82 \pm 0.20) \times 10^{-3}$, mainly extracted from $B \rightarrow X_{u} I \nu$ and $B \rightarrow \pi / \nu$ decay
$\dagger\left|V_{u b}\right|_{\text {incl }}=(4.13 \pm 0.25) \times 10^{-3},\left|V_{u b}\right|_{\text {excl }}=(3.70 \pm 0.16) \times 10^{-3}, \sim 1.7-2.7 \sigma$
\dagger enlarge the set of exclusive processes to determine $\left|V_{u b}\right|$, a candidate is $B \rightarrow \rho / \nu$ $\triangle \rho$ is reconstructed by $\pi \pi$ invariant mass spectral, width effect/nonresonant contribution ?
\triangle the underlying consideration is $B \rightarrow \pi \pi / \bar{\nu}_{l}\left(B_{14}\right) \quad$ [S. Faller 2014]
- Besides the unitarity triangles (orthogonality), the unitarity can also be tested by the normalization conditions, the least precisely determinations is

$$
\begin{array}{r}
\left|V_{u s}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{t s}\right|^{2}=1.004 \pm 0.012, \quad\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=1.001 \pm 0.012 \\
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985 \pm 0.0007
\end{array}
$$

$\dagger\left|V_{c s}\right|=0.975 \pm 0.006$, mainly extracted from the (semi)leptonic $D_{(s)}$ decays
$\dagger\left|V_{c s}\right|=0.972 \pm 0.007,\left|V_{c s}\right|=0.984 \pm 0.012, \sim 1.5 \sigma$ tension
\dagger new channels like semileptonic D_{s} decays and are highly anticipated \triangle problems encountered, $D_{s} \rightarrow f_{0} / \nu$ has large uncertainty due to the width and complicate structure

- we need to study dipion and dikaon LCDAs

Dipion DAs

- Chiral-even and odd LC expansion with gauge factor [$x, 0$][Polyakov 1999, Diehl 1998]

$$
\begin{array}{r}
\left\langle\pi^{a}\left(k_{1}\right) \pi^{b}\left(k_{2}\right)\right| \bar{q}_{f}(x n) \gamma_{\mu} \tau q_{f^{\prime}}(0)|0\rangle=\kappa_{a b} k_{\mu} \int d x e^{i z x(k \cdot n)} \Phi_{\|}^{a b, f f^{\prime}}\left(z, \zeta, k^{2}\right), \\
\left\langle\pi^{a}\left(k_{1}\right) \pi^{b}\left(k_{2}\right)\right| \bar{q}_{f}(x n) \sigma_{\mu \nu} \tau q_{f^{\prime}}(0)|0\rangle=\kappa_{a b} \frac{2 i}{f_{2} \frac{\perp}{\perp}} \frac{k_{1 \mu} k_{2 \nu}-k_{2 \mu} k_{1 \nu}}{2 \zeta-1} \int d x e^{i z x(k \cdot n)} \Phi_{\perp}^{a b, f f^{\prime}}\left(z, \zeta, k^{2}\right) .
\end{array}
$$

$\triangle n^{2}=0, \quad \triangle$ index f, f^{\prime} respects the (anti-)quark flavor, $\quad \triangle a, b$ indicates the electric charge of each pion, \triangle coefficient $\kappa_{+-/ 00}=1$ and $\kappa_{+0}=\sqrt{2}, \quad \triangle k=k_{1}+k_{2}$ is the invariant mass of dipion state,
$\triangle \tau=1 / 2, \tau^{3} / 2$ corresponds to the isoscalar and isovector $2 \pi \mathrm{DAs}$,
\triangle higher twist proportional to $1, \gamma_{\mu} \gamma_{5}$ have not been discussed yet, γ_{5} vanishes because of P-parity conservation

\dagger three independent kinematic variables

\triangle momentum fraction z carried by anti-quark with respecting to the total momentum of dipion state,
\triangle longitudinal momentum fraction carried by one of the pions $\zeta=k_{1}^{+} / k^{+}, 2 q \cdot \bar{k}(\propto 2 \zeta-1) \quad \triangle$ the invariant mass squared k^{2}
\dagger the chirally odd constant $f_{2 \pi}^{\perp}$ is defined by the local matrix element

$$
\lim _{k^{2} \rightarrow 0}\left\langle\pi^{a}\left(k_{1}\right) \pi^{b}\left(k_{2}\right)\right| \bar{q}(0) \sigma_{\mu \nu} \tau^{3} / 2 q(0)|0\rangle=2 i \epsilon^{a b c} / f_{2 \pi}^{\perp}\left(k_{1 \mu} k_{2 \nu}-k_{2 \mu} k_{1 \nu}\right)
$$

\dagger normalization conditions
$\int_{0}^{1} \Phi_{\|(\perp)}^{\prime=1(0)}\left(u, \zeta, k^{2}\right)=(2 \zeta-1) F_{\pi}^{(t)}\left(k^{2}\right), \quad \int_{0}^{1} d z(2 z-1) \Phi_{\|}^{l=0}\left(z, \zeta, k^{2}\right)=-2 M_{2}^{(\pi)} \zeta(1-\zeta) F_{\pi}^{\mathrm{EMT}}\left(k^{2}\right)$.
$\triangle F_{\pi}^{e m}(0)=1, \quad \triangle F_{\pi}^{t}(0)=1 / f_{2 \pi}^{\perp}, \quad \triangle F_{\pi}^{\mathrm{EMT}}(0)=1$,
$\triangle M_{2}^{(\pi)}$ is the momentum fraction carried by quarks in the pion associated to the usual quark distribution

Dipion DAs

- 2π DAs is decomposed in terms of $C_{n}^{3 / 2}(2 z-1)$ and $C_{\ell}^{1 / 2}(2 \zeta-1)$

$$
\begin{aligned}
& \Phi^{\prime=1}\left(z, \zeta, k^{2}, \mu\right)=6 z(1-z) \sum_{n=0, \text { even }}^{\infty} \sum_{l=1, \text { odd }}^{n+1} B_{n \ell}^{I=1}\left(k^{2}, \mu\right) C_{n}^{3 / 2}(2 z-1) C_{\ell}^{1 / 2}(2 \zeta-1) \\
& \Phi^{I=0}\left(z, \zeta, k^{2}, \mu\right)=6 z(1-z) \sum_{n=1, \text { odd }}^{\infty} \sum_{l=0, \text { even }}^{n+1} B_{n \ell}^{I=0}\left(k^{2}, \mu\right) C_{n}^{3 / 2}(2 z-1) C_{\ell}^{1 / 2}(2 \zeta-1)
\end{aligned}
$$

- $B_{n e}\left(k^{2}, \mu\right)$ have similar scale dependence as the a_{n} of π, ρ, f_{0} mesons

$$
\begin{gathered}
B_{n \ell}\left(k^{2}, \mu\right)=B_{n \ell}\left(k^{2}, \mu_{0}\right)\left[\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right]^{\frac{\gamma_{n}^{(0)}-\gamma_{0}^{(0)}}{2 \beta_{0}}} \\
\gamma_{n}^{\perp(\|),(0)}=8 C_{F}\left(\sum_{k=1}^{n+1} \frac{1}{k}-\frac{3}{4}-\frac{1}{2(n+1)(n+2)}\right)
\end{gathered}
$$

- Watson theorem of $\pi-\pi$ scattering amplitudes \triangle implies an intuitive way to express the imaginary part of 2π DAs, \triangle leads to the Omnés solution of N-subtracted dispersion relation for the coefficients

$$
B_{n \ell}^{l}\left(k^{2}\right)=B_{n \ell}^{l}(0) \operatorname{Exp}\left[\sum_{m=1}^{N-1} \frac{k^{2 m}}{m!} \frac{d^{m}}{d k^{2 m}} \ln B_{n \ell}^{l}(0)+\frac{k^{2 N}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d s \frac{\delta_{\ell}^{\prime}(s)}{s^{N}\left(s-k^{2}-i 0\right)}\right]
$$

\triangle excellent description of pion form factor up to $k^{2} \sim 2.5 \mathrm{GeV}^{2}$
$\triangle 2 \pi$ DAs in a wide range energies is given by δ_{ℓ}^{l} and a few subtraction constants

Dipion DAs

\dagger soft pion theorem relates the chirarlly even coefficients with a_{n}^{π}

$$
\sum_{\ell=1}^{n+1} B_{n \ell}^{\|, l=1}(0)=a_{n}^{\pi}, \quad \sum_{\ell=0}^{n+1} B_{n \ell}^{\|, I=0}(0)=0
$$

$\dagger 2 \pi$ DAs relate to the skewed parton distributions (SPDs) in the pion by crossing \triangle express the moments of SPDs in terms of $B_{n \prime}\left(k^{2}\right)$ in the forward limit as

$$
M_{N=\mathrm{odd}}^{\pi}=\frac{3}{2} \frac{N+1}{2 N+1} B_{N-1, N}^{I=1}(0), \quad M_{N=\text { even }}^{\pi}=3 \frac{N+1}{2 N+1} B_{N-1, N}^{I=0}(0)
$$

\dagger in the vicinity of the resonance, 2π DAs reduce to the DAs of ρ / f_{0}
\triangle relation between the a_{n}^{ρ} and the coefficients $B_{n \ell}$

$$
a_{n}^{\rho}=B_{n 1}(0) \operatorname{Exp}\left[\sum_{m=1}^{N-1} c_{m}^{n 1} m_{\rho}^{2 m}\right], \quad c_{m}^{(n 1)}=\frac{1}{m!} \frac{d^{m}}{d k^{2 m}}\left[\ln B_{n 1}(0)-\ln B_{01}(0)\right]
$$

$\triangle f_{\rho}$ relates to the imaginary part of $B_{n /}\left(m_{\rho}^{2}\right)$ by

$$
\left\langle\pi\left(k_{1}\right) \pi\left(k_{2}\right) \mid \rho\right\rangle=g_{\rho \pi \pi}\left(k_{1}-k_{2}\right)^{\alpha} \epsilon_{\alpha}
$$

$$
f_{\rho}^{\|}=\frac{\sqrt{2} \Gamma_{\rho} \operatorname{Im} B_{01}^{\|}\left(m_{\rho}^{2}\right)}{g_{\rho \pi \pi}}, \quad f_{\rho}^{\perp}=\frac{\sqrt{2} \Gamma_{\rho} m_{\rho} \operatorname{Im} B_{01}^{\perp}\left(m_{\rho}^{2}\right)}{g_{\rho \pi \pi} f_{2 \pi}^{\perp}}
$$

Dipion DAs

\dagger The subtraction constants of $B_{n \ell}(s)$ [SC 2019, 2023]
\triangle firstly studied in the effective low-energy theory based on instanton vacuumupdated in 2019 and 2023

(nl)	$B_{n \ell}^{\\|}(0)$	$c_{1}^{\\|,(n l)}$	$\frac{d}{d k^{2}} \ln B_{n \ell}^{\\|}(0)$	$B_{n \ell}^{\perp}(0)$	$c_{1}^{\perp,(n l)}$	$\frac{d}{d k^{2}} \ln B_{n \ell}^{\perp}(0)$
(01)	1	0	$1.46 \rightarrow 1.80$	1	0	$0.68 \rightarrow 0.60$
(21)	$-0.113 \rightarrow 0.218$	-0.340	0.481	$0.113 \rightarrow 0.185$	-0.538	-0.153
(23)	$0.147 \rightarrow-0.038$	0	0.368	$0.113 \rightarrow 0.185$	0	0.153
(10)	$-0.556 \rightarrow-0.300$	-	$0.413 \rightarrow 0.375$	-	-	-
(12)	$0.556 \rightarrow 0.300$	-	$0.413 \rightarrow 0.375$	-	-	-

Phenomena

- $B \rightarrow \pi \pi$ transition matrix element is defined in terms of the form factors

$$
\begin{array}{r}
i\left\langle\pi^{+}\left(k_{1}\right) \pi^{0}\left(k_{2}\right)\right| \bar{u} \gamma_{\nu}\left(1-\gamma_{5}\right) b\left|\bar{B}^{0}(p)\right\rangle=F_{\perp}\left(q^{2}, k^{2}, \zeta\right) \frac{2}{\sqrt{k^{2}} \sqrt{\lambda_{B}}} i \epsilon_{\nu \alpha \beta \gamma} q^{\alpha} k^{\beta} \bar{k}^{\gamma} \\
+F_{t}\left(q^{2}, k^{2}, \zeta\right) \frac{q_{\nu}}{\sqrt{q^{2}}}+F_{0}\left(q^{2}, k^{2}, \zeta\right) \frac{2 \sqrt{q^{2}}}{\sqrt{\lambda_{B}}}\left(k_{\nu}-\frac{k \cdot q}{q^{2}} q_{\nu}\right) \\
+ \\
F_{\|}\left(q^{2}, k^{2}, \zeta\right) \frac{1}{\sqrt{k^{2}}}\left(\bar{k}_{\nu}-\frac{4(q \cdot k)(q \cdot \bar{k})}{\lambda_{B}} k_{\nu}+\frac{4 k^{2}(q \cdot \bar{k})}{\lambda_{B}} q_{\nu}\right)
\end{array}
$$

- P-wave contribution to $B \rightarrow \pi \pi$ form factors with $I=1$ dipion [SC, Khodjamirian, Vitor 2017]
- $P(S)$-wave contributions to $B \rightarrow \pi \pi$ form factors with $I=1$ (0) dipion [SC 2019]

- $B_{s} \rightarrow\left(f_{0} \rightarrow\right) K K$ form factors[SC and Jian-min Shen 2020]

Phenomena

- Semileptonic $D_{(s)}$ decays provide a clean environment to study scalar mesons
$\triangle D_{(s)} \rightarrow a_{0} e^{+} \nu\left[\right.$ BESIII 18, 21],$D^{+} \rightarrow f_{0} / \sigma\left(\rightarrow \pi^{+} \pi^{-}\right) e^{+} \nu$ [BESIII 19], $D_{s} \rightarrow f_{0}\left(\rightarrow \pi^{+} \pi^{-}\right) e^{+} \nu$ [CLEO 09]
$\triangle D_{s} \rightarrow f_{0}\left(\rightarrow \pi^{0} \pi^{0}, K_{s} K_{s}\right) e^{+} \nu$ Branching ratio[BESIII 22], $D_{s} \rightarrow f_{0}\left(\rightarrow \pi^{+} \pi^{-}\right) e^{+} \nu$ form factor[BESIII 23]

$$
\begin{array}{r}
\mathcal{B}\left(D_{s} \rightarrow f_{0}\left(\rightarrow \pi^{0} \pi^{0}\right) e^{+} \nu\right)=(7.9 \pm 1.4 \pm 0.3) \times 10^{-4} \\
\mathcal{B}\left(D_{s} \rightarrow f_{0}\left(\rightarrow \pi^{+} \pi^{-}\right) e^{+} \nu\right)=(17.2 \pm 1.3 \pm 1.0) \times 10^{-4}
\end{array}
$$

\triangle isospin symmetry expectation $\mathcal{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right) / \mathcal{B}\left(f_{0} \rightarrow \pi^{0} \pi^{0}\right)=2$, possible $\rho^{0} \rightarrow \pi^{+} \pi^{-}$pollution $\triangle f_{+}^{f_{0}}(0)\left|V_{c s}\right|=0.504 \pm 0.017 \pm 0.035$

- theoretical consideration $\frac{d \Gamma\left(D_{s}^{+} \rightarrow f_{0} I^{+} \nu\right)}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c s}\right|^{2} \lambda^{3 / 2}\left(m_{D_{s}}^{2}, m_{f_{0}}^{2}, q^{2}\right)}{192 \pi^{3} m_{D_{s}}^{3}}\left|f_{+}\left(q^{2}\right)\right|^{2}$
- f_{0} is observed in the $\pi \pi$ invariant mass spectral
- improve the calculation by considering the width effect
\dagger resonances model $\left(f_{0} \rightarrow[\pi \pi]_{\mathrm{S}}\right)$ [BESIII 23]

$$
\frac{d \Gamma\left(D_{s}^{+} \rightarrow[\pi \pi]_{S} I^{+} \nu\right)}{d s d q^{2}}=\frac{1}{\pi} \frac{G_{F}^{2}\left|V_{c s}\right|^{2}}{192 \pi^{3} m_{D_{S}}^{3}}\left|f_{+}\left(q^{2}\right)\right|^{2} \frac{\lambda^{3 / 2}\left(m_{D_{S}}^{2}, s, q^{2}\right) g_{1} \beta_{\pi}(s)}{\left.\mid m_{S}^{2}-s+i\left(g_{1} \beta_{\pi}(s)\right)+g_{2} \beta_{K}(s)\right)\left.\right|^{2}}
$$

\dagger stable $\pi \pi$ state

$$
\frac{d^{2} \Gamma\left(D_{s}^{+} \rightarrow[\pi \pi]_{\mathrm{S}} I^{+} \nu\right)}{d k^{2} d q^{2}}=\frac{G_{F}^{2}\left|V_{c s}\right|^{2}}{192 \pi^{3} m_{D_{s}}^{3}} \frac{\beta_{\pi \pi}\left(k^{2}\right) \sqrt{\lambda_{D_{s}}} q^{2}}{16 \pi} \sum_{\ell=0}^{\infty} 2\left|F_{0}^{(\ell)}\left(q^{2}, k^{2}\right)\right|^{2}
$$

- $D_{s} \rightarrow f_{0}$ ffs to $D_{s} \rightarrow[\pi \pi]_{\mathrm{S}}$ ffs $\quad\left[\mathrm{SC} 2017,19,20, \mathrm{~S}\right.$. Descotes-Genon 19] in $B_{(s)}$ cases

Phenomena

- $D_{s} \rightarrow\left(f_{0} \rightarrow\right)[\pi \pi]_{S} e \nu_{e}$ and $D_{s}^{+} \rightarrow[\pi \pi]_{S} e^{+} \nu$ at leading twist[SC 2023, to be appear]

- significant model dependence, require a model independent study
- subleading twist contribution is indeed important \triangle go further to study the twist three 2π DAs
- significant difference in comparison to the result obtained from the resonant model
- further measurements would help us to understand the dipion system much better

Conclusion

- modulus representation of DR, LCSRs calculation + BABAR data, $a_{2}(1 \mathrm{GeV})=(0.22-0.33), \quad a_{4}(1 \mathrm{GeV})=(0.12-0.25)$
\triangle Pion deviates from the purely asymptotic one $\quad \triangle a_{2}^{\pi}$ is not enough, more inner structures
- modulus representation of DR, pQCD calculation + BABAR data, $m_{0}^{\pi}(1 \mathrm{GeV})=1.37_{-0.32}^{+0.29}, \quad a_{2}(1 \mathrm{GeV})=0.25 \pm 0.25$
- with leading twist dipion LCDAs, $B \rightarrow \pi \pi$ and $D_{s} \rightarrow[\pi \pi]_{\mathrm{S}}$ form factors are calculated, and compared to the result obtained from B meson LCSRs
- twist three dipion LCDAs are highly anticipated to improve prediction power
- Jefferson Lab 12 GeV upgrade program $\left(9 \mathrm{GeV}^{2}\right)$ to extract the nonperturbative paras (besides the lattice evaluation)
- BEPCII, up to 5.4 GeV in 2023-2024
- D_{s} / D_{s}^{*} events: BESIII $\mathcal{O}\left(10^{6}\right)$, Belle II $\mathcal{O}\left(10^{9}\right)$, STCF $\mathcal{O}\left(10^{9}\right)$, CEPC $\mathcal{O}\left(10^{10}\right)$

Thank you for your patience.

