Inside the hadrons

- viewed from a light-front perspective
James P. Vary

Department of Physics and Astronomy
Iowa State University
Ames, USA

University of Science and Technology of China
Hefei, China
June 15, 2023

Dirac's forms of relativistic dynamics [Dirac, Rev. Mod. Phys. 21, 392 1949] Instant form is the well-known form of dynamics starting with $x^{0}=t=0$
$K^{i}=M^{0 i}, J^{i}=1 / 2 \varepsilon^{i j k} M^{j k}, \varepsilon^{i j k}=(+1,-1,0)$ for (cyclic, anti-cyclic, repeated) indeces Front form defines relativistic dynamics on the light front (LF): $x^{+}=x^{0}+x^{3}=t+z=0$

$$
\begin{aligned}
& P^{ \pm} \triangleq P^{0} \pm P^{3}, \vec{P}^{\perp} \triangleq\left(P^{1}, P^{2}\right), x^{ \pm} \triangleq x^{0} \pm x^{3}, \vec{x}^{\perp} \triangleq\left(x^{1}, x^{2}\right), E^{i}=M^{+i} \\
& E^{+}=M^{+-}, F^{i}=M^{-i}
\end{aligned}
$$

instant form
time variable

$$
t=x^{0}
$$

Hamiltonian

$$
H=P^{0}
$$

$$
\vec{P}, \vec{J}
$$

dynamical
\vec{K}, P^{0}
$\underset{\text { relation }}{\text { dispersion }} p^{0}=\sqrt{\vec{p}^{2}+m^{2}}$
front form

$$
x^{+} \triangleq x^{0}+x^{3}
$$

$$
P^{-} \triangleq P^{0}-P^{3}
$$

$$
\vec{P} \overrightarrow{ }^{\perp}, P^{+}, \vec{E}^{\perp}, E^{+}, J^{-}
$$

$$
\vec{F}^{\perp}, P^{-}
$$

$$
p^{-}=\left(\vec{p}_{\perp}^{2}+m^{2}\right) / p^{+}
$$

point form

$$
\tau \triangleq \sqrt{t^{2}-\vec{x}^{2}-a^{2}}
$$

$$
p^{\mu}=m v^{\mu}\left(v^{2}=1\right)
$$

Adapted from talk by Yang Li

Light Front (LF) Hamiltonian Defined by its
Elementary Vertices in LF Gauge

QED \& QCD

QCD

Discretized Light Cone Quantization

[H.C. Pauli \& S.J. Brodsky, PRD32 (1985)]
$\sqrt{\Omega}$

Basis Light Front Quantization

[J.P. Vary, et al., PRC81 (2010)]
$\phi\left(\vec{k}_{\perp}, x\right)=\sum_{\alpha}\left[f_{\alpha}\left(\vec{k}_{\perp}, x\right) a_{\alpha}+f_{\alpha}^{*}\left(\vec{k}_{\perp}, x\right) a_{\alpha}^{\dagger}\right]$
where $\left\{a_{\alpha}\right\}$ satisfy usual (anti-) commutation rules.
Furthermore, $f_{\alpha}(\vec{x})$ are arbitrary except for conditions:
Orthonormal: $\int f_{\alpha}\left(\vec{k}_{\perp}, x\right) f_{\alpha^{\prime}}^{*}\left(\vec{k}_{\perp}, x\right) \frac{d^{2} k_{\perp} d x}{(2 \pi)^{3} 2 x(1-x)}=\delta_{\alpha \alpha^{\prime}}$
Complete: $\quad \sum_{\alpha} f_{\alpha}\left(\vec{k}_{\perp}, x\right) f_{\alpha}^{*}\left(\vec{k}_{\perp}^{\prime}, x^{\prime}\right)=16 \pi^{3} \sqrt{x(1-x)} \delta^{2}\left(\vec{k}_{\perp}-\vec{k}_{\perp}^{\prime}\right) \delta\left(x-x^{\prime}\right)$
For mesons we adopt (later extended to baryons): [Y. Li, et al., PLB758 (2016)]

$$
f_{\alpha=\{n m l\}}\left(\vec{k}_{\perp}, x\right)=\phi_{n m}\left(\vec{k}_{\perp} / \sqrt{x(1-x)}\right) \chi_{l}(x)
$$

$\phi_{n m}$ 2D-HO functions as in AdS/QCD
χ_{l} Jacobi polynomials times $x^{a}(1-x)^{b}$

BLFQ

Symmetries \& Constraints

Baryon number
Charge
Angular momentum projection (M-scheme) $\quad \sum_{i}\left(m_{i}+\mathrm{s}_{i}\right)=J_{z}$

All $J \geq J_{z}$ states in one calculation

Longitudinal momentum (Bjorken sum rule)
Longitudinal mode regulator (Jacobi)
Transverse mode regulator (2D HO)

$$
\sum_{i} b_{i}=B
$$

"Internal coordinates" $\vec{k}_{i \perp}=\vec{p}_{i \perp}-x_{i} \vec{P}_{\perp} \Rightarrow \sum_{i} \vec{k}_{i \perp}=0$
$H \rightarrow H+\lambda H_{C M}$

$$
\begin{aligned}
& \sum_{i} l_{i} \leq \text { (L) } \\
& \sum_{i}\left(2 n_{i}+\mid n\right. \\
& \sum_{i} \vec{k}_{i \perp}=0
\end{aligned}
$$

Global Color Singlets (QCD)
Light Front Gauge
Optional Fock-Space Truncation

Light-Front Wavefunctions (LFWFs)

$\left|\psi_{h}(P, j, \lambda)\right\rangle=\sum_{n} \int\left[\mathrm{~d} \mu_{n}\right] \psi_{n / h}\left(\left\{\vec{k}_{i \perp}, x_{i}, \lambda_{i}\right\}_{n}\right)\left|\left\{\vec{p}_{i \perp}, p_{i}^{+}, \lambda_{i}\right\}_{n}\right\rangle$
LFWFs are frame-independent (boost invariant) and depend only on the relative variables: $x_{i} \equiv p_{i}^{+} / P^{+}, \vec{k}_{i \perp} \equiv \vec{p}_{i \perp}-x_{i} \vec{P}_{\perp}$
LFWFs provide intrinsic information of the structure of hadrons, and are indispensable for exclusive processes in DIS
[Lepage '80]

- Overlap of LFWFs: structure functions (e.g. PDFs), form factors, ...
- Integrating out LFWFs: light-cone distributions (e.g. DAs)
"Hadron Physics without LFWFs is like Biology without DNA!"

Basis Light-Front Quantization (BLFQ)

Positronium in QED at Strong Coupling ($\alpha=0.3$)
Systematic removal of regulators ($b=\mathrm{HO}$ momentum scale)

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015)

Positronium in QED at Strong Coupling Covariant Basis Light-Front Quantization (BLFQ)

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015)

Positronium with one dynamical photon: Light-front QED Hamiltonian

- QED Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m_{e}\right) \Psi
$$

- Light-front QED Hamiltonian from standard Legendre transformation

$$
\begin{aligned}
P^{-}=\int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} F^{\mu+} \partial_{+} A_{\mu}+i \bar{\Psi} \gamma^{+} \partial_{+} \Psi-\mathcal{L} & \text { Light-cone gauge: }\left(A^{+}=0\right) \\
=\int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} \frac{1}{2} \bar{\Psi} \gamma^{+} \frac{m_{e}^{2}+\left(i \partial^{\perp}\right)^{2}}{i \partial^{+}} \Psi+\frac{1}{2} A^{j}\left(i \partial^{\perp}\right)^{2} A^{j} & \text { kinetic energy terms } \\
& +e j^{\mu} A_{\mu}+\frac{e^{2}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+} \\
& \begin{array}{c}
\text { vertex } \quad \text { instantaneous } \\
\text { interaction photon } \\
\text { interaction }
\end{array}
\end{aligned}
$$

Positronium with one dynamical photon: Interaction Part Of Hamiltonian

$\mathrm{H}_{\text {int }}$	$\|e \bar{e}\rangle$	$\|e \bar{e} \gamma\rangle$
$\langle e \bar{e}\|$. ${ }^{\text {E }}$	
$\langle e \bar{e} \gamma\|$		0 excluded by gauge princip

Kaiyu Fu, et al., in preparation

Mass Renormalization

- Mass counterterm $\Delta_{m}=m_{\text {bare }}-m_{p h y s}$ is needed for fermion self-energy correction

- Mass renormalization needs to be performed on single physical electron
- Prediction power on positronium mass
- Mass counterterm is determined by fitting single electron mass
- Complication: Δ_{m} depends on UV cutoff and thus is basis dependent.
- An extension of sector-dependent renormalization is needed: $\Delta_{m}\left(N_{\max }, K\right)$

Here at $\alpha=1 / 137$

vs.

[Kaiyu Fu et al, in preparation]

- Mass counterterm is at higher order: $\Delta_{m} \propto \alpha m \mathrm{E}_{B} \propto \alpha^{2} m$

Basis Scale and Rotational Symmetry

- Adjust the 2d harmonic oscillator basis scale parameter b to minimize the energy difference within the triplet $1^{3} S_{1}$

- Maintaining rotational symmetry leads to a corresponding UV cutoff

[Kaiyu Fu et al, in preparation]

Wave Functions for S-Wave States

- Wave functions in $\left|e^{+} e^{-}\right\rangle$Fock sector, dominant and non-dominant helicity component
- Nodal structure visible in non-dominant helicity component
[Kaiyu Fu et al, in preparation]

PDFs of the electron and photon

- $\left|e^{+} e^{-}\right\rangle$Fock sector carries 99.1% probability.
- The peak of photon PDF is at small x region.

Overview of BLFQ/tBLFQ applications to mesons and baryons

Common features

Transverse confinement from 2D HO (in common with LF Holography)
Longitudinal confinement (Y. Li, et al, PLB 2016, PRD 2017)
Basis states from exact solutions of this reference Hamiltonian
Compare results with experiment, lattice, DSE/BSE, ...

Distinct features

For Veff

1) perturbative one-gluon exchange (Y. Li, et al, PLB 2016, PRD 2017)
2) NJL model for light meson applications (S. Jia, et al, PRC 2019)

For Fock space truncation

1) Valence sector
2) Valence sector plus dynamical gluon (plus sea quarks, plus ...)

For observables

1) Single state properties and decays
2) Transitions between states
3) Non-perturbative probes (tBLFQ)
(Work by Meijian Li, et al)
Next Methods
BLFQ on Quantum Computers

Heavy Quarkonia [Y.Li,PLB758,2016; PRD96,2017]

- Effective Hamiltonian in the $q \bar{q}$ sector

$$
H_{\text {eff }}=\underbrace{\frac{\vec{k}_{\perp}^{2}+m_{q}^{2}}{x}+\frac{\vec{k}_{\perp}^{2}+m_{\bar{q}}^{2}}{1-x}}_{\text {LF kinetic energy }}+\underbrace{\kappa^{4} x(1-x) \vec{r}_{\perp}^{2}-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \frac{\partial}{\partial x}\left(x(1-x) \frac{\partial}{\partial x}\right)}_{\text {confinement }}+\underbrace{H_{0}}_{\begin{array}{c}
\text { one-gluon } \\
\text { exchange }
\end{array}}
$$

where $x=p_{q}^{+} / P^{+}, \vec{k}_{\perp}=\vec{k}_{q \perp}=\vec{p}_{q \perp}-x \vec{P}_{\perp}=-\vec{k}_{\bar{q} \perp}=-\left(\vec{p}_{\bar{q} \perp}-(1-x) \vec{P}_{\perp}\right), \vec{r}_{\perp}=\vec{r}_{q \perp}-\vec{r}_{\bar{q} \perp}$.

- Confinement transverse holographic confinement [S.J.Brodsky,PR584,2015] longitudinal confinement [Y.Li,PLB758,2016]
- One-gluon exchange with running coupling

$$
V_{g}=-\frac{4}{3} \frac{4 \pi \alpha_{s}\left(Q^{2}\right)}{Q^{2}} \bar{u}_{\sigma^{\prime}} \gamma^{\mu} u_{\sigma} \bar{v}_{s} \gamma_{\mu} v_{s^{\prime}}
$$

- Basis representation
- valence Fock sector: $|q \bar{q}\rangle$
- basis functions: eigenfunctions of H_{0} (LF kinetic energy+ confinement)

Spectroscopy

 [Y. Li, et al., Phys. Letts. B 758, 118 (2016); Phys. Rev. D 96, 016022 (2017)]

	$\kappa(\mathrm{GeV})$	$m_{q}(\mathrm{GeV})$	$\mathrm{rms}(\mathrm{MeV})$	$\overline{\delta_{J} M}(\mathrm{MeV})$	$N_{\max }$	basis dim.
$c \bar{c}$	0.966	1.603	31	17	32	1812
$b \bar{b}$	1.389	4.902	38	8	32	1812

κ determined from fits to spectrum follows the HQET trajectory $\kappa_{h} \propto \sqrt{M_{h}}$, in MIM agreement with recent LFH result

Diphoton width $\Gamma_{\gamma \gamma}$ of charmonia in BLFQ

\checkmark Notoriously challenging
\checkmark BLFQ predictions are very competetive!
\checkmark No parameters were adjusted!

NRQM/LF (Babiarz 2019)
NRQM (Babiarz 2019) Lattice (Chen 2020)
Lattice (Zou 2021)
BLFQ (this work)
PDG 2020

Lattice: Dudek '06, Chen '16, Chen '20, Meng '21, Zou ' 21 ; NRQCD: Feng '15 \& '17
NRQM: Babiarz '19 \& '20

Comparison of theoretical prediction of masses and dilepton/diphoton widths combined

Transition form factor: η_{c}

$$
\mathcal{M}^{\mu \nu}=4 \pi \alpha_{e m} \varepsilon^{\mu \nu \rho \sigma^{q_{1 \rho} \rho}} q_{2 \sigma} F_{P \gamma \gamma}\left(q_{1}^{2}, q_{2}^{2}\right)
$$

\checkmark Diphoton width $\Gamma_{\gamma \gamma}=\frac{\pi}{4} \alpha_{e m}^{2} M_{P}^{3}\left|F_{P \gamma \gamma}(0,0)\right|^{2}$
\checkmark Single-tag TFF $F_{P \gamma}\left(Q^{2}\right)=F_{P \gamma \gamma}\left(Q^{2}, 0\right)=F_{P \gamma \gamma}\left(0, Q^{2}\right)$

$$
F_{P \gamma}\left(Q^{2}\right)=e_{f}^{2} 2 \sqrt{2 N_{c}} \int \frac{d x}{2 \sqrt{x(1-x)}} \int \frac{d^{2} k_{\perp}}{(2 \pi)^{3}} \frac{\psi_{\uparrow \downarrow-\downarrow \uparrow}\left(x, \vec{k}_{\perp}\right)}{k_{\perp}^{2}+m_{f}^{2}+x(1-x) Q^{2}}
$$

Lepage '80, Feldman '97, Babiarz, '19

Light Meson Mass Spectrum Including One Dynamical Gluon

$$
\mid \text { meson }\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{\mathbf{1}}^{I_{1}}+\cdots
$$

Fix the parameters by fitting six blue states

- $\pi_{1}(1400):|q \bar{q} g\rangle$ dominates
- $\pi(1300)$: Decay Constant (DC) $<\pi$'s DC
J / ψ production cross section $\quad \pi^{ \pm} N \rightarrow J / \psi X$

BLFQ Basis States

$>$ BLFQ basis: expansion in Fock space

$$
\begin{aligned}
& \left|\beta_{\text {meson }}\right\rangle=|q \bar{q}\rangle+|q \bar{q} g\rangle+|g g\rangle+|q \bar{q} q \bar{q}\rangle+|q \bar{q} g g\rangle+|q \bar{q} q \bar{q} g\rangle+|q \bar{q} q \bar{q} g g\rangle+\cdots \\
& \left|\beta_{\text {baryon }}\right\rangle=|q q q\rangle+|q q q g\rangle+|q q q q \bar{q}\rangle+|q q q g g\rangle+|q q q q \bar{q} g\rangle+|q q q q \bar{q} g g\rangle+\cdots \\
& \left|\beta_{\text {deuterium }}\right\rangle=|q q q q q q\rangle+|q q q q q q q g\rangle+|q q q q q q q \bar{q}\rangle+|q q q q q q g g\rangle+\cdots
\end{aligned}
$$

$>$ Dimension of basis states increases with number of Fock sectors => motivation for quantum computing

Baryons with one dynamical gluon

$$
\begin{aligned}
& \left|P_{\text {baryon }}\right\rangle=\Psi_{1}|q q q\rangle+\Psi_{2}|q q q g\rangle \\
& \boldsymbol{P}^{-}=\boldsymbol{H}_{\text {K.E. }}+\boldsymbol{H}_{\text {trans }}+\boldsymbol{H}_{\text {long }}+\boldsymbol{H}_{\text {Interact }} \\
& H_{\text {K.E. }}=\sum_{i} \frac{p_{i}^{2}+m_{q}^{2}}{p_{i}^{+}} \\
& \boldsymbol{H}_{\text {trans }} \sim \boldsymbol{\kappa}_{\boldsymbol{T}}^{\mathbf{4}} \boldsymbol{r}^{\mathbf{2}} \quad \text {-- Brodsky, Teramond arXiv: } 1203.4025 \\
& \boldsymbol{H}_{\text {long }} \sim-\sum_{i j} \boldsymbol{\kappa}_{L}^{4} \boldsymbol{\partial}_{x_{i}}\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{j}} \boldsymbol{\partial}_{\boldsymbol{x}_{j}}\right) \quad---\mathrm{Y} \mathrm{Li}, \mathrm{X} \text { Zhao, P Maris, J Vary, PLB 758(2016) } \\
& H_{\text {Interact }}=H_{V e r t e x}+H_{\text {inst }}=g \bar{\psi} \gamma^{\mu} T^{a} \psi A_{\mu}^{a}+\frac{g^{2} C_{F}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+}
\end{aligned}
$$

Unpolarized Parton Distribution Functions

The data are extracted from MARATHON data
Including the One Dynamical Gluon Fock Sector, the gluon distribution is closer to the global fit.

Nucleon Spin with BLFQ

> Obtain observables from wave function
Quark Helicity

$$
O \equiv\left\langle\beta^{\prime}, \Lambda^{\prime}\right| \hat{O}|\beta, \Lambda\rangle
$$

$>$ Spin decomposition in BLFQ
Orbital Angular
Momentum

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].

Helicity Parton Distribution Functions

- $\Delta G=\int_{0}^{1} \mathrm{~d} x \Delta g(x)=0.131 \pm 0.003$, is sizeable to the proton spin.
- PHENIX Collaboration: $\Delta G^{[0.02,0.3]}=0.2 \pm 0.1$ PRL 103 (2009) 012003

The sea quarks' contributions come from the DGLAP evolution
S. Xu, C. Mondal, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].
N. Sato et al. [JAM], PRD93 (2016); E. R. Nocera et al. [NNPDF], NPB 887 (2014).

3-Dimension Structure of Nucleon

> Obtain observables from wave function

$$
O \equiv\langle\beta| \hat{O}|\beta\rangle \quad\left|\beta_{\text {nucleon }}\right\rangle=|q q q\rangle+|q q q g\rangle
$$

[arXiv:2209.08584 [hep-ph]]
[In preparation, Bolang Lin, Siqi Xu, C. Mondal et.al]

Orbital angular momentum distributions

Canonical: $\quad \ell_{d}=-0.0114 \pm 0.0004 \quad \ell_{u}=0.0327 \pm 0.0013 \quad \ell_{g}=-0.0065 \pm 0.0005$
At the LC gauge : $\quad \frac{1}{2} \Delta \Sigma=0.359 \pm 0.002 \quad \Delta G=0.131 \pm 0.003$

Light-Front QCD Hamiltonian

$$
\left|P_{\text {baryon }}\right\rangle=\Psi_{1}|q q q\rangle+\Psi_{2}|q q q g\rangle+\Psi_{31}|q q q u \bar{u}\rangle+\Psi_{32}|q q q d \bar{d}\rangle+\Psi_{33}|q q q s \bar{s}\rangle
$$

$$
H_{\text {Interact }}=g \bar{\psi} \gamma^{\mu} T^{a} \psi A_{\mu}^{a}+\frac{g^{2} C_{F}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+}
$$

Leading Fock sector $|q q q\rangle \sim 46.5 \%$

$$
H_{\text {Interact }}=g \bar{\psi} \gamma^{\mu} T^{a} \psi A_{\mu}^{a}+\frac{g^{2} C_{F}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+}+\frac{g^{2} C_{F}}{2} \bar{\psi} \gamma^{\mu} A_{\mu} \frac{\gamma^{+}}{i \partial^{+}} A_{v} \gamma^{v} \psi
$$

Preliminary results Siqi Xu, et al, in prep

Parton Distribution Function

> Parton distribution functions with five Fock sectors

- One diagonalization, got the distribution of valence quark, sea quark and gluon
- PDF ratio $\mathrm{d} / \mathrm{u}=0.04$ at $x \rightarrow 1$

Preliminary results

Now return to applications to baryons solved in the qqq + qqqg sectors

Gluon T-even TMD

Quark T-even TMD

- Within the Basis Light-front Quantization (BLFQ) we expand proton to $|q q q\rangle+$ $|q q q g\rangle$ Fock sector, obtain the corresponding LFWFs and calculate T-even TMDs of gluon and quark

Zhi Hu, et al., in preparation

- After integrating over x, we further obtain $g: 0.156(\mathrm{GeV})^{2}$
u: $0.082(\mathrm{GeV})^{2}$
$d: 0.083(\mathrm{GeV})^{2}$
- Define $\left.\left.\langle | p^{\perp}\right|^{n}\right\rangle_{f_{1}}^{q}=\int d^{2} p^{\perp}\left|p^{\perp}\right|^{n} \times f_{1}^{q}$ then we know that $\frac{\left\langle\left. p^{\perp}\right|^{2}\right\rangle_{f_{1}}^{q}}{\left.\left.\langle | p^{\perp}\right|^{0}\right\rangle_{f_{1}}^{q}}$ would be the average transverse momentum of flavor q
- Average transverse momentum of d quark is slightly larger than that of u, the same as our $|q q q\rangle$ Fock sector conclusion.
- With $|q q q g\rangle$ Fock sector we now also know that transverse momentum of gluon is larger than that of quark Zhi Hu, et al., in preparation

All-charm tetraquark using BLFQ

- New issues compared with mesons and baryons
- Cluster decomposition principle for interactions
- Identical particles issue
- More than one color singlet
- Hamiltonian
- Transverse confining potential like in AdS/QCD
- Longitudinal confining potential (Głazek et al. PLB773, 172-178 (2017), different than BLFQ_{0})
- One-gluon-exchange spin-dependent potential (Wiecki et al.)
- Problem with negative M^{2} solved by ad hoc modification of the Hamiltonian (which breaks cluster decomposition principle)

Kamil Serafin, et al., Phys Rev. D 105, 094028 (2022)

Forward quark jet-nucleus scattering in a light-front Hamiltonian approach

Time-dependent Basis Light-Front Quantization (tBLFQ)

* First-principles:

In the light-front Hamiltonian formalism, the state obeys the time-evolution equation, and the Hamiltonian is derived from the QCD Lagrangian

$$
\frac{1}{2} P^{-}\left(x^{+}\right)\left|\psi\left(x^{+}\right)\right\rangle=i \frac{\partial}{\partial x^{+}}\left|\psi\left(x^{+}\right)\right\rangle
$$

* Nonperturbative treatment:

The time evolution operator is divided into many small timesteps, each timestep is evaluated numerically and intermediate states are accessible,

$$
\begin{aligned}
& \left|\psi\left(x^{+}\right)\right\rangle=\mathcal{T}_{+} \exp \left[-\frac{i}{2} \int_{0}^{x^{+}} d z^{+} P^{-}\left(z^{+}\right)\right]|\psi(0)\rangle \\
& \quad=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} \mathcal{T}_{+} \exp \left[-\frac{i}{2} \int_{x_{k-1}^{+}}^{x_{k}^{+}} d z^{+} P^{-}\left(z^{+}\right)\right]|\psi(0)\rangle
\end{aligned}
$$

- Basis representation:

Optimal basis has the same symmetries of the system, and it is the key to numerical efficiency

We consider scattering of a high-energy quark moving in the positive z direction, on a high-energy nucleus moving in the negative z direction.

Time evolution of a quark state in the $|q\rangle+|q g\rangle$ Fock space observed from the transverse momentum space

Quantum Simulation of QFT in the Front Form

 2002.04016, 2105.10941, 2011.13443, 2009.07885| NISQ
 benchmarking | | Resource requirements | | Fault-tolerant, | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Low | | ab initio | |
| $=O(K \operatorname{lnor} K)$ | | | | LF QFT features | Advantages for QC |
| $\mathfrak{Q}_{\text {Direct }}$ | | | Resources | No ghost fields Linear EoM | Low qubit count |
| $\mathfrak{Q}_{\text {Compact }}=O(\sqrt{K} \log K)$ | | | | LF momentum >0 | Efficient encoding |
| | Trotter | Oracle | Evolution | Sparse Hamiltonians | Using sparsity-based methods |
| Direct | \checkmark | \checkmark | Measurement | LF wavefunction \rightarrow
 \rightarrow static quantities;
 Simple form of operators in the second-quantized formalism | Simple form of measurement operators |
| Compact | X | \checkmark | | | |
| $O_{F}\|x, i\rangle$ | $\mid x$, | | | | |
| $O_{H}\|x, y, 0\rangle=\left\|x, y, H_{x y}\right\rangle$ | | | Other | Trivial vacuum, fewer cut-offs, no fermion doubling, form invariance of H | |

Light front approach to hadrons on quantum computers

- Quantum computers: New tool to simulate many-body quantum system. (quantum mechanical nature and high scalability)
- In the Noisy Intermediate-Scale Quantum (NISQ) era, the Variational Quantum Eigensolver (VQE) and Subspace-search VQE (SSVQE) approaches are promising tools to solve nuclear physics problems.
- Advantages of light front Hamiltonian formalism are directly applicable
- We first formulate the problem on the light front and then map the Hamiltonian to qubits (quantum bits)

Wenyang Qian, et al. Phys. Rev. Research 4, 043193 (2022)

Formulating the problem on qubits

- We adopt the Hamiltonian used in a previous work:

$$
H_{\text {eff }, \gamma_{5}}=\overbrace{\underbrace{\frac{\mathbf{k}_{\perp}^{2}+m_{q}^{2}}{x}+\frac{\mathbf{k}_{\perp}^{2}+m_{\bar{q}}^{2}}{1-x}}_{\text {LF kinetic energy }}+\underbrace{\kappa^{4} x(1-x) \mathbf{r}_{\perp}^{2}-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \frac{\partial}{\partial x}\left(x(1-x) \frac{\partial}{\partial x}\right)}_{\text {confinement }}+V_{g}}^{H_{\text {eff }}}+H_{\gamma_{5}}
$$

[Vary, 0905.1411]

- Basis representation (BLFQ) is key to represent the Hamiltonian on qubits.
- Small-size Hamiltonians (4-by-4 and 16-by-16) are used.
- Direct encoding and compact encoding are compared.

	N_{f}	$\alpha_{\mathrm{s}}(0)$	$\kappa(\mathrm{MeV})$	$m_{q}(\mathrm{MeV})$	$N_{\max }$	$L_{\max }$	Matrix dimension
$H_{\mathrm{eff}}^{(1,1)}$	3	0.89	560 ± 10	300 ± 10	1	1	4 by 4
$H_{\mathrm{eff}}^{(4,1)}$					4	1	16 by 16

$$
\begin{array}{rlrl}
H_{\text {direct }}^{(1,1)} & =2269462 \text { IIII }-284243(\mathrm{ZIII}+\mathrm{IIZI}) & H_{\text {compact }}^{(1,1)} & =1134731 \mathrm{II}-566245 \mathrm{IZ} \\
& -850488(\mathrm{IZII}+\mathrm{IIIZ})+12714(\mathrm{XZXI}+\mathrm{YZYI}) & & +4831 \mathrm{XI}+20598 \mathrm{XZ} \\
& -7883(\mathrm{IXZX}+\mathrm{IYZY})
\end{array}
$$

Wenyang Qian, et al. Phys. Rev. Research 4, 043193 (2022)

Summary and Outlook

Basis Light Front Quantization approach to mesons and baryons yields competitive descriptions and predictions

- Positronium test applications found successful
- Bound states and transitions of hadrons are described
- Time-dependent scattering applications are advancing

Plan: continue to expand the Fock spaces (e.g. more gluons)

- Plan: continue to develop renormalization \& counterterms
- Efficient utilization of supercomputing resources
- Well-positioned to exploit advances in quantum computing

Thank you for your attention

