粒子与原子核物理学科 seminar at USTC

Double Beta Decay

and Beyond

韩柯 上海交通大学

2022/03/04

韩柯, 上海交通大学

2016 Symmetry Magazine

3/4/22

无中微子双贝塔衰变 (NLDBD)

- 无中微子双贝塔衰变 与 马约拉纳中微子
- 轻子数不守恒
- •测量中微子有效质量(Majorana Effective Mass)
- 例子: ${}^{136}_{54}Xe \rightarrow {}^{136}_{56}Ba + 2e^- + (2\bar{v})$ ${}^{130}_{52}Te \rightarrow {}^{130}_{54}Xe + 2e^- + (2\bar{v})$

中微子有效质量

极低信号数量

• 超长半衰期 T_{0v},极低信号量:

$$S = \ln(2) \frac{M \cdot N_A \cdot a \cdot \varepsilon}{W} \frac{t}{T_{0\nu}}$$

- •现有实验半衰期限制为1026年以上
- 100kg 级 90% 富集¹³⁶Xe探测器,每 年少于3个信号
- 下一代实验目标灵敏度为10²⁷到 10²⁸年

如何鉴别NLDBD信号?

- •测量双电子的能量
- 测量双电子的径迹
- •鉴别衰变子核

Sum of two electrons energy

Simulated track of $0\nu\beta\beta$ in high pressure Xe

韩柯, 上海交通大学

实验挑战:极限要求下的探测器技术

实验挑战:极限要求下的探测器技术

•极低本底

•高性能(效率、分辨率)

韩柯, 上海交通大学

实验挑战:本底控制

- 宇宙射线:
 - 地下开展实验
- 宇生放射性
 - •地下存储,地下加工,等
- 地下实验室本底
 - •额外屏蔽体
- 探测器材料天然放射性
 - 天然放射性 1-100 Bq/kg
 - 实验要求至少1 mBq/kg

Muon-induced 环境本底

• 抑制Muon-induced 本底:更深的实验室或者更强力的主动屏蔽体(大型探测器)

Muon-induced 探测器本底

- Muon激活探测器材料 带来不可避免的本底
- DARWIN@LNGS:
 ¹³⁷Xe beta能谱为¹³⁶Xe
 Ονββ ROI主要本底
- •相应本底在锦屏低100 倍,优势明显

探测器本底占据主导

- 10⁻⁴ 10⁻⁵ c/keV/kg/y → 每吨年, 10 keV区间内 0.1 到 1 个本底事件
- 主要来自于探测器、屏蔽体材料

LEGEND-1000 预期本底

 232 Th chain

Underground Ar

Cryostat steel γ/n

 10^{-4}

cts / (keV kg yr)

■Ge cosmogenic

∎²³⁸U chain

Surface α

 10^{-5}

■ Cosmic rays

 10^{-3}

主流探测器技术

Giuliani, TAUP 2021

实验分布

https://agenda.infn.it/e/double-beta-2021

韩柯, 上海交通大学

锦屏地下实验室 CJPL

- 2400米岩石埋深, 等效水屏蔽约6800米
 - < 0.2 muons/m²/day
- 水平隧道开车进出
- 国家重大科技基础设施 —— "极深地下极低 辐射本底前沿物理实验设施"

PandaX-III: 高压气体氙TPC 研发

- 高压(10bar)气体TPC 包含140公斤富集¹³⁶Xe
- 微结构气体探测器Micromegas作为读出平面:毫米量级的径迹重建能力
- 突出特点: 通过气体TPC独有的径迹识别来有效地去除本底
- 三年数据的预期灵敏度: 9×10²⁵ yr (90% CL)

PandaX-III: 高压气体氙TPC 研发

- 600 升原型探测器成功运行 (JINST 13, P06012, 2018)
- 主探测器核心部件完成预研、加工,近期开始组装
 - 2 m²读出平面, 52块Micromegas (科大)
 - 6656 通道高密度、低本底电子学读出 (科大)
 - 4 m³ 容积低本底不锈钢罐体

上海交通大学

PandaX-4T投入运行;发表约100天试运行数据

PandaX-4T 试运行数据高能初步结果

- 能量分辨率较PandaX-II 大大提高, 2.6 MeV 区间标定能谱分辨率达到 1.5% (σ/E)
- 初步分析表明高能能谱中, 2νββ 开始占据主导地位
- 近期开展¹³⁶Xe, ¹³⁴Xe 2vββ 能谱拟合工作, 测量 2vββ 半衰期(上限)、以及¹²⁴Xe 双电子俘获相 关物理分析
- 半衰期灵敏度达到 EXO-200水平 (10²⁵ yr)

无中微子双贝塔衰变探测器技术的外溢

• 低本底技术:

- DBD探测器本身是最灵敏的本底测量仪器
- 平衡实用性和性价比
- 探测器技术:
 - 高能量分辨率、低阈值
 - 高探测效率
 - 径迹特性
 - (低本底)

材料表面放射性问题

- 放射性洁净度要求=块材洁净+表面洁净
 - 零件机械加工、组装调试、氡气及其子核→表面
 二次污染
- 表面污染引入本底

XIA Ultra-lo 1800 :

主要针对半导体硅片测量;1800 cm²;

10⁻⁴ c/cm²/hr, 满足硅片5α每天的要求

Canberra LB4200 :

最大5寸硅片 约10⁻²c/cm²/hr

韩柯, 上海交通大学

BetaCage:CDMS实验组提出的 低本底MWPC设计,未能实现

BiPo-3:SuperNEMO实验组设计建造PMT 阵列,测量Bi-Po偶合

韩柯, 上海交通大学

时间投影室技术:能量+径迹

- •利用气体探测器的能量+径迹特性测量样品表面污染
 - 粒子鉴别去除本底, 径迹定位筛选信号来源
 - 大幅面(2400cm²)、高灵敏度、高效率
 - 目标测量灵敏度为 4×10⁻⁵ c/cm²/hr α

多轮原型探测器迭代(单块 Micromegas)

@圆桶腔体

场笼+适配铝合金腔体

克力腔体

无中微子双贝塔衰变探测器技术的外溢

- •低本底技术:
 - DBD探测器本身是最灵敏的本底测量仪器
 - 平衡实用性和性价比
- 探测器技术:
 - ・高能量分辨率、低阈値
 ・高探测效率
 - 径迹特性
 - (低本底)

测量稀有核衰变分支比

- ⁴⁰K电子俘获到⁴⁰Ar基态是核物理中非常重要的衰变过程,但尚未实验观测到
 - ⁴⁰K EC 是唯一一个三阶禁闭的EC过程 (ΔI = 4, Δ**π** = yes)
 - 40K 是Nal 暗物质探测器中重要本底
- 由于高阶禁闭效应, 其理论预期分支比0.2%误差约100%

ANAIS Eur. Phys. J. C (2016) 76:429

测量稀有核衰变分支比

- 异步测量40K 衰变的伽马与X-ray/Auger
- 低温量热器(CUORE)测量 X-ray/Auger
- 液氙探测器(PandaX)测量伽马
- 对比得出EC到基态分支比精确测量

1461 keV γ events: 0.2% deposit energy in KCL; <0.1% escape LXe

基于TES的X-ray 量热器(上科大, 张硕)

- •低阈值,高能量分辨率
- 测量 3.2 keV X-ray/Auger 的理想探测器:
 - 全吸收 (99.8%, 1g KCI 晶体)

无中微子双贝塔衰变探测器技术的外溢

- •低本底技术:
 - DBD探测器本身是最灵敏的本底测量仪器
 - 平衡实用性和性价比

- Migdal效应:电子分担核的能量,且运动方向不同,被甩出来的过程
 - 已在核衰变过程中观测到
- 暗物质粒子碰撞核,引起核反冲,有可能带来Migdal效应
- 应用Migdal效应,提高传统暗物质探测器在低能区的灵敏度

CDEX PRL 123 161301 (2019)

测量核反冲Migdal效应

- Migdal效应后的 X-ray/Auger 电子
- 直接测量核反冲+Migdal电子的径迹:低气压气体探测器

35

模拟数据 : 0.1 Bar CF₄; 470 keV NR; 5 keV Migdal 电子 中子源离探测器15 cm

- 分叉的径迹;能量沉积密度完全不同
- 信号数量预估 (10 mHz) :
 - 10⁻⁵概率发生可记录的Migdal效应
 - 强流DT 中子发生器 10⁸ 流强, 10³ 发生核反冲
- 本底:
 - 普通核反冲
 - (n, γ) 反应带来的γ, 部分能量沉积到TPC

Enabling technology

- 亚毫米级别径迹记录能力:高颗 粒度热压接Micromegas
 - 0.4 mm 条宽
 - 上下两层条读出
 - 15 cm × 15 cm 有效读出面积

• 信号径迹精细模拟与 TPC 硬件设 计同步进行中

- 无中微子双贝塔衰变实验非常具有挑战性,但是由于其重要物理意义,
 仍是国际地下实验室的热点,目标为覆盖整个IH相空间
- 锦屏地下实验室自然条件优越,多个实验组布局研发
- PandaX利用高压气体和液体氙TPC开展DBD相关研究
- DBD 项目推动的低本底技术与专有探测器技术潜力巨大, 交叉、应用 尚在初步探索中

核矩阵元 (NME) 的巨大影响

CUORE \rightarrow CUPID

- •低温量热器技术,高能量分辨率
- 模块化设计, 988 通道TeO2阵列
- 正在取数

升级计划: CUPID (CUORE with particle ID)

- 光热双读出
- LiMoO4 闪烁晶体阵列

韩柯, 上海交通大学

GERDA, Majorana Demonstrator \rightarrow LEGEND

GERDA at LNGS, Italy

本底水平: 5.7x10⁻⁴ c/kev/kg/yr (Science)

Majorana Demonstrator at Sanford, US

Bkg: ~5x10⁻³ c/kev/kg/yr (ArXiv:1902.02299)

- 合并为LEGEND (Large Enriched Ge Experiment for ββ Decay)
- 第一阶段: 200 kg @ LNGS (2021--)

EXO-200 → nEXO

- nEXO 单相型TPC探测器 预期利用5吨富集Xe-136在加拿大 SNOLab 开展实验
- 预期灵敏度1028年量级

KamLAND-Zen (¹³⁶Xe)

- 日本主推, Kamioka实验室
- ¹³⁶Xe 最好的半衰期限制: 1.07 x 10²⁶ yr (90%CL)
- KamLAND-ZEN 800 正在取数, 近期发表结果

KamLAND-Zen 800

CJPL-I

Φ: 18m

CJPL-II

CDEX-300v 探测器

- •7串,每串~30个高纯锗晶体;锗探测器总质量:~300kg
- 探测器类型:
 - Baseline: BEGe (1-1.2 kg/个)
 - Optional: ICPC (~2 kg/个)
- 探测器密封在亚克力壳中;隔离锗晶体与电子学、外部屏蔽体

地下电解铜

高纯锗探测器制备

探测器高纯锗晶体生长

47

低本底前端电子学

CDEX 展望

技术开展预研

• 2024年开始探测器系统测试与运行;目前针对多项关键

- 半衰期目标 T_{1/2}>10²⁷ yr, <m_{ββ}>: 30-70meV, 本底< 0.2/(keV T yr)
- 未来逐步推动国际合作的吨级高纯锗0νββ实验落户锦屏

CUPID-CJPL

- 建立国内首个地下低温晶体 量热器实验平台,在锦屏开 展¹⁰⁰Mo 0νββ 实验
- 发挥国内晶体研发优势,开 展¹⁰⁰Mo富集晶体生长技术
- 2023年开始 10 kg 36块富集 晶体实验
- 国际CUPID实验群体的重要组 成部分;在CUPID-Reach、
 CUPID-Ton 阶段赶上国外实 验。

LMO低温晶体量热器测试

- 开展自然丰度大尺寸LMO立方晶体国内地面实验室测试
- 复旦与科大稀释制冷机通过验收运行
 - 最低温<10 mK, 稳定性<10 µK@10mK
- 低温读出, 主动减震装置

韩柯, 上海交通大学

高压气体离子时间投影室 NvDEx

NvDEx 展望

- 100-kg级实验地面样机基本完成设计,正在研制中
- 2021:验证Topmetal芯片读出、完成高压气腔和气体系统
- 2022:完成100-kg级实验地面样机
- •希望~2023年,开始在CJPL进行地下实验样机研制

低本底 316L不锈钢腔体部件

铜屏蔽体 、绝缘层

TPC场笼

地面实验室

韩柯, 上海交通大学

下一代液氙多物理目标探测器PandaX-xT

- •发展PandaX-xT成为多物理目标探测器, 立足锦屏开展暗物质与中微子研究
- •40T量级的灵敏质量,包含多吨级¹³⁶Xe,具有国际竞争力的0νββ灵敏度
- •开始运行自然氙探测器,同步开展富集工作的研发,可以进行有无¹³⁶Xe的对比实验, 提高灵敏度和更加明确的确认疑似信号
- 10^{3} • 深挖液体探测器MeV区间事件区分, PandaX-4T 10 提高信号本底鉴别效率 *m*_{ββ} (meV) 10 PandaX: 200 Ton-year Inverted 10 Hierarchy 10^{2} 10^{-1} 10^{0} 10^{0} 10 10^{1} 10^{1}

 m_3 (meV)

Normal

 $m_1 \text{ (meV)}$

Hierarchy

 10^{2}