Detecting ultra-light particles from astrophysical observations and quantum sensors

Outline

Introduction Probing DPDM from Gaia (Position/velocity) Probing DPDM from PTA (Time) EHT polarmetric measurements on axion cloud from SMBH Detecting axion through the Superconducting Radio Frequency Cavity.

Not just higher energy

Cavity with static B field

$$\left(\partial_t^2 + \frac{m_a}{Q_1}\partial_t + m_a^2\right)\mathbf{E}_1 \sim m_a \cos m_a t$$

$$Q_a \sim 10^6$$
 $m_a \sim {
m GHz} \sim 10^{-6}~{
m eV}$ Compton wavelength

Cavity size ~ (axion mass)^-1

e.g. ADMX, HAYSTACK

Ultra-light DM

Difficult to detect, need astrophysical observations.

> De Broglie wavelength ~ the soliton core

For ultra-light DM(~10⁻²² eV), they form super low frequency (nHz) oscillating backgrounds

Probing DPDM through Gaia

H-k. Guo, Y-q. Ma, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, arxiv: 1902.05962 JCAP 1905 (2019) 015

Fussy DM

Excellent ultralight DM candidate

$$\rho(x) = \begin{cases} 0.019(\frac{m_a}{m_{a,0}})^{-2}(\frac{l_c}{1\,\mathrm{kpc}})^{-4}M_{\odot}\mathrm{pc}^{-3}, & \text{for } r < l_c \\ \frac{\rho_0}{r/R_H(1+r/R_H)^2}, & \text{for } r > l_c \end{cases}$$

Ultra-light bosonic DM can cause BEC, and behave like CDM at large scale

At small scale (comparing to wavelength, m~10⁻²² eV, λ ~kpc), it can be used to solve the cusp-core problem

Hu et al., 2000

Ultralight DM is expected to have a soliton core

soliton solution
<u>NFW profile</u>

Ultra-light DM

Difficult to detect, need astrophysical observations.

For ultra-light DM(~10⁻²² eV), they form super low frequency (nHz) oscillating backgrounds

Ultra-light DPDM

A hypothetical hidden-sector particle proposed as a force carrier similar to photon

Considering a special class of dark photon which is the gauge boson of the U(1)_B or U(1)_{B-L} group: it would interact with any object with B or (B-L) number ("dark charge")

A good candidate of (fuzzy) dark matter (DPDM)

If its is very small (10⁻²² eV), the dark photon behaves like an oscillating background, drives displacements for particles with "dark charge"

Precision of star position

Gaia satelite (2003), plan to accurately measure 1% of star inside the Milky Way (~10⁹) for their position and speed.

Expect breakthrough in the Milky Way structure, evolution of stars, new planet, fundamental physics, etc.

Aberration of Light

Objects(Gaia statelite) feel an oscillating acceleration in the DPDM backgrounds

$$\boldsymbol{a}(t, \boldsymbol{x}) \simeq \epsilon e \frac{q}{m} m_A \boldsymbol{A_0} \cos(m_A t - \boldsymbol{k} \cdot \boldsymbol{x})$$

This acceleration will cost the velocity has a periodic change, therefore periodically shift the position of the star from the observer

$$\Delta \mathbf{v}(t, \mathbf{x}) \simeq \epsilon e \frac{q}{m} \mathbf{A}_{\mathbf{0}} \sin(m_A t - \mathbf{k} \cdot \mathbf{x}).$$

$$\Delta\theta \simeq -\Delta v \sin\theta$$

radial direction not very accurate

A large sample of the star position period variation will hint the signal.

H-k. Guo, Y-q. Ma, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, JCAP 1905 (2019) 015

 $(m_A, \epsilon, \phi, \alpha, \delta) = (10^{-22} \text{ eV}, 3 \times 10^{-24}, 2.59, 1.25, 0.68).$

Gaia search for ultra-light DPDM

95% C.L. exclusion by varing mass and coupling constant

H-k. Guo, Y-q. Ma, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, JCAP 1905 (2019) 015 Future Gaia final data release will give you the real data with time sequence

Probing DPDM through PTA

J. Shu., X. Xiao, Z-j. Xia, Q. Yuan, Y. Zhao, X-j. Zhu, with PPTA collaboration, in preparation

The pulsar timing array (PTA)

mili-seconds pulsar is the stablest "clock" in cosmology.
accurately measure the change of the time pulse can be used to probe nHz gravitational waves
Can be used to probe other fundamental physics like DM
PPTA, EPTA, IPTA, NanoGrav, CPTA(FAST)?

未来平方公里阵列(SKA)

Sensitivity of GW search from NANOGrav PTA

Aggarwal et al. (2019)

"Anomalies" for power law SGWB recently

can be interpreted from the PBH, cosmic defects, phase transition will be checked by other collaborations, like PPTA next year.

PPTA search for scalar fuzzy DM

Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter

Nataliya K. Porayko,^{1,*} Xingjiang Zhu,^{2,3,4,†} Yuri Levin,^{5,6,2} Lam Hui,⁵ George Hobbs,⁷ Aleksandra Grudskaya,⁸ Konstantin Postnov,^{8,9} Matthew Bailes,^{10,4} N. D. Ramesh Bhat,¹¹ William Coles,¹² Shi Dai,⁷ James Dempsey,¹³ Michael J. Keith,¹⁴ Matthew Kerr,¹⁵ Michael Kramer,^{1,14} Paul D. Lasky,^{2,4} Richard N. Manchester,⁷ Stefan Osłowski,¹⁰ Aditya Parthasarathy,¹⁰ Vikram Ravi,¹⁶ Daniel J. Reardon,^{10,4} Pablo A. Rosado,¹⁰ Christopher J. Russell,¹⁷ Ryan M. Shannon,^{10,4} Renée Spiewak,¹⁰ Willem van Straten,¹⁸ Lawrence Toomey,⁷ Jingbo Wang,¹⁹ Linqing Wen,^{3,4} and Xiaopeng You²⁰ (The PPTA Collaboration)

Future SKA can have much better results!

Parkes PTA数据

64m Parkes telescope in Australia

Pulsars	Nobs	T(years)	$\overline{\sigma} \times 10^{-6}(s)$	$\log_{10} A_{SN}$	Ŷsn	$\log_{10} A_{DM}$	ŶDM
J0437-4715	29262	15.03	0.296	$-15.76^{+0.17}_{-0.18}$	$6.63_{-0.13}^{+0.17}$	$-13.05_{-0.08}^{+0.10}$	$2.26^{+0.32}_{-0.44}$
J0613-0200	5920	14.20	2.504	$-14.63^{+0.77}_{-0.68}$	$4.93^{+1.33}_{-1.61}$	$-13.02^{+0.08}_{-0.08}$	$0.95^{+0.33}_{-0.31}$
J0711-6830	5547	14.21	6.197	$-12.85^{+0.14}_{-0.16}$	$0.97^{+0.64}_{-0.55}$	$-14.54_{-0.89}^{+0.72}$	$4.43^{+1.68}_{-1.72}$
J1017-7156	4053	7.77	1.577	$-12.89^{+0.07}_{-0.07}$	$0.54_{-0.37}^{+0.53}$	-12.72+0.06	$2.18^{+0.45}_{-0.44}$
J1022+1001	7656	14.20	5.514	$-12.79^{+0.12}_{-0.13}$	$0.54_{-0.37}^{+0.55}$	$-13.04_{-0.12}^{+0.10}$	$0.58^{+0.47}_{-0.36}$
J1024-0719	2643	14.09	4.361	$-14.28^{+0.27}_{-0.20}$	$6.51_{-0.60}^{+0.35}$	$-14.53^{+0.54}_{-0.56}$	5.22+1.14
J1045-4509	5611	14.15	9.186	$-12.75_{-0.40}^{+0.24}$	$1.58^{+1.28}_{-0.93}$	$-12.18^{+0.09}_{-0.08}$	$1.86^{+0.36}_{-0.32}$
J1125-6014	1407	12.34	1.981	$-12.64^{+0.11}_{-0.12}$	$0.51_{-0.37}^{+0.55}$	$-13.14^{+0.19}_{-0.21}$	$3.36^{+0.73}_{-0.66}$
J1446-4701	508	7.36	2.200	$-16.46^{+2.88}_{-3.17}$	$2.74^{+2.49}_{-1.89}$	$-13.49^{+0.32}_{-1.87}$	$2.48^{+1.92}_{-1.45}$
J1545-4550	1634	6.97	2.249	$-17.33^{+2.50}_{-2.55}$	$3.25^{+2.45}_{-2.18}$	$-13.40_{-0.38}^{+0.24}$	$3.90^{+1.61}_{-1.09}$
J1600-3053	7047	14.21	2.216	$-17.63^{+2.10}_{-2.29}$	$3.28^{+2.34}_{-2.15}$	$-13.27^{+0.12}_{-0.13}$	$2.79^{+0.43}_{-0.40}$
J1603-7202	5347	14.21	4.947	$-12.82^{+0.14}_{-0.16}$	$1.01^{+0.67}_{-0.60}$	$-12.66^{+0.10}_{-0.09}$	$1.44^{+0.40}_{-0.38}$
J1643-1224	5941	14.21	4.039	$-12.32^{+0.08}_{-0.09}$	$0.51_{-0.34}^{+0.42}$	$-12.27^{+0.07}_{-0.07}$	$0.55^{+0.32}_{-0.29}$
J1713+0747	7804	14.21	1.601	$-14.09^{+0.25}_{-0.38}$	$2.98^{+1.00}_{-0.64}$	$-13.35^{+0.08}_{-0.08}$	$0.53^{+0.32}_{-0.31}$
J1730-2304	4549	14.21	5.657	$-17.39^{+2.39}_{-2.51}$	$3.05^{+2.59}_{-2.12}$	$-14.11_{-0.57}^{+0.40}$	$4.22^{+1.42}_{-1.04}$
J1732-5049	807	7.23	7.031	$-16.51^{+3.04}_{-2.97}$	$3.29^{+2.37}_{-2.97}$	$-13.38^{+0.54}_{-0.84}$	$4.07^{+1.96}_{-1.93}$
J1744-1134	6717	14.21	2.251	$-13.39^{+0.14}_{-0.15}$	$1.49^{+0.66}_{-0.57}$	$-13.35_{-0.09}^{+0.09}$	$0.86^{+0.40}_{-0.33}$
J1824-2452A	2626	13.80	2.190	$-12.56^{+0.13}_{-0.12}$	$3.61^{+0.41}_{-0.39}$	$-12.18^{+0.11}_{-0.10}$	$1.64^{+0.46}_{-0.59}$
J1832-0836	326	5.40	1.430	$-16.47^{+2.63}_{-3.09}$	$3.66^{+2.33}_{-2.52}$	$-13.07^{+0.24}_{-0.63}$	$3.77^{+2.00}_{-1.05}$
J1857+0943	3840	14.21	5.564	$-14.76^{+0.74}_{-0.50}$	5.75 ^{+0.91} -1.53	$-13.40^{+0.20}_{-0.25}$	$2.66^{+0.83}_{-0.67}$
J1909-3744	14627	14.21	0.672	$-13.60^{+0.13}_{-0.12}$	$1.60^{+0.43}_{-0.46}$	$-13.48^{+0.09}_{-0.08}$	$0.69^{+0.38}_{-0.35}$
J1939+2134	4941	14.09	0.468	$-14.38^{+0.22}_{-0.18}$	$6.24_{-0.62}^{+0.49}$	$-11.59^{+0.07}_{-0.07}$	$0.13^{+0.19}_{-0.10}$
J2124-3358	4941	14.21	8.863	$-14.79^{+0.82}_{-0.67}$	$5.07^{+1.37}_{-1.97}$	$-13.35^{+0.18}_{-0.33}$	$0.95^{+1.11}_{-0.66}$
J2129-5721	2879	13.88	3.496	$-15.48^{+1.92}_{-3.54}$	$2.91^{+2.29}_{-1.83}$	$-13.31^{+0.13}_{-0.14}$	$1.07^{+0.65}_{-0.65}$
J2145-0750	6867	14.09	5.086	$-12.82^{+0.10}_{-0.11}$	$0.62^{+0.50}_{-0.40}$	$-13.33^{+0.14}_{-0.16}$	$1.38^{+0.54}_{-0.55}$
J2241-5236	5224	8.20	0.830	$-13.40^{+0.09}$	$0.44^{+0.40}_{-0.20}$	$-13.79^{+0.10}$	$1.42^{+0.61}$

脉冲到达时间 (TOA)

Pulsar Modeling

PSRJ	J0030+0451			
RAJ	00:30:27.4299630	1	0.0000000083327092134	Right ascension, RA (J2000)
DECJ	+04:51:39.75230	1	0.0000000193016085164	Declination, DEC (J2000)
F0	205.53069608827312545	1	1.6735454617113885805e-13	Proper motion in RA (mas yr^{-1}) Proper motion in DEC (mas yr^{-1})
F1	-4.3060388399134177208e-16	51	2.0847319452591396919e-21	Spin frequency, $f(s^{-1})$
PEPOCH	53000			\dot{f} (s ⁻²)
POSEPOCH	53000			Parallax, π (mas)
DMEPOCH	53000			Dispersion measure, DM (cm $^{\circ}$ pc) DM (cm $^{-3}$ pc yr $^{-1}$)
PMRA	-4.0541352583640798551	1	0.06006537664217530270	\overrightarrow{DM} (cm ⁻³ pc yr ⁻²)
PMDEC	-5.0337686500180439013	1	0.14002511698705866205	Binary model
РХ	4.0229124332613435578	1	0.02065704842394362750	Orbital period, $P_{\rm b}$ (d)
EPHVER	5			Epoch of periastron, T_0 (MJD)
CLK	UNCORR			Longitude of periastron, ω_0 (deg)
MODE 1				Eccentricity, e
EPHEM	DE414			Sine of inclination, $\sin i$
DM	110			Companion mass, $m_c (M_{\odot})$ Derivative of B_{-} , \dot{B}_{-}
DM1	010			Periastron advance $\dot{\omega}_0$ (deg yr ⁻¹)
DM2	010			Epoch of ascending node, $T_{\rm asc}$ (MJD)

Noise Model

White noise (irrelevant to signal): from device, pulsar timing templet

Red noise (relevant) : pulsar rotation noise, from propagation

Turbulence in the solar system: from big planet, etc

Noise from target sources: plasma cloud between pulsar and earth

Parkes PTA preliminary

fully correlated (lower) or uncorrelated (upper) DPDM polarization

Probing Axions with Event Horizon Telescope Polarimetric Measurements

Y-f. Chen, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, Phys.Rev.Lett. 124 (2020) 061102

Theory motivation

 $\left(\Theta - \arg \det M_q\right) \frac{\alpha_s}{2\pi} G\tilde{G}$

Re(ø)

< | 0^{-| | }

Im(ø)

Induced axion fields

misalignment

PQ symmetry soft explicit broken at high scale f

Strong CP problem

pNGB naturally very light

Why axion?

Big problems of particle physics & Comoslogy

- Strong CP problem
- The identity of dark matter

misalignment mechanism, non-thermal DM

- Gauge hierarchy problem, the origin of EWSB relaxion
- Baryogenesis
- Inflation
- Cosmological Constant Problem

Search of axion

How to search axion? Axion-couplings: Axion-photon ADMX CAST

LIGO, pulsar, etc

Axion-gluon QCD phase transition CASPEr

Many other observations, etc

Axion like particle

Axion induce birefringent effect:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} \nabla^{\mu} a \nabla_{\mu} a - V(a),$$

$$\nabla \cdot E = g \nabla \varphi \cdot B , \quad \nabla \times E + \frac{\partial B}{\partial t} = 0 ,$$

$$\nabla \times \boldsymbol{B} - \frac{\partial \boldsymbol{E}}{\partial t} = g \left(\boldsymbol{E} \times \nabla \varphi - \boldsymbol{B} \, \frac{\partial \varphi}{\partial t} \right),$$

 $\mathbf{\nabla} \cdot \mathbf{B} = 0$,

$$\Box \varphi = \frac{\partial^2 \varphi}{\partial t^2} - \nabla^2 \varphi = -g \boldsymbol{E} \cdot \boldsymbol{B} \,.$$

The condensation of a CP-odd particle distinguishes +/-helicities of a photon

Maxell equation with axion source

Birefringent effect

Axion induced birefringent effect

$$\Box A_{\pm} = \pm 2ig_{a\gamma} [\partial_z a \dot{A}_{\pm} - \dot{a} \partial_z A_{\pm}],$$

$$\omega_{\pm} \approx k \pm \frac{1}{2}g\left(\frac{\partial\varphi}{\partial t} + \nabla\varphi \cdot \frac{k}{k}\right)$$

different phase velocities for +/- helicities

For linearly polarized photons

$$\begin{aligned} \Delta \Theta &= g_{a\gamma} \Delta a(t_{\rm obs}, \mathbf{x}_{\rm obs}; t_{\rm emit}, \mathbf{x}_{\rm emit}) \\ &= g_{a\gamma} \int_{\rm emit}^{\rm obs} ds \ n^{\mu} \ \partial_{\mu} a \\ &= g_{a\gamma} [a(t_{\rm obs}, \mathbf{x}_{\rm obs}) - a(t_{\rm emit}, \mathbf{x}_{\rm emit})], \end{aligned}$$

Measure the change of the position angle:

Requires polarimetric measurements

Event Horizon Telescope

mm telescope array at radio frequency around the Earth

mm wavelength radio telescope particularly good for astro-astropolarimetric measurements

Farady rotation: position angle around O(1)

Imagine of M87*

Image of the supermassive black hole at the center of the elliptical galaxy M87, for four different days.

The imagine of the ring is around 5 horizon distance

BH measured and EHT

	M87*:	16 Mpc.	10^9 solar mass				
Blackhole measured:		10^13 m, 10^5 s,	10^-20 eV a=0.99				
	Sgr A*:	8 kpc, 10^10 m.	10^6 solar mass 10^-17 eV				
Excellent anglar resolution	s:	100 s,	a=?				
20 micro as							
resolve features: smaller than l	resolve features: smaller than BH size (1/3?)						

SMBH	М	a_J	μ range	μ for $\alpha = 0.4$	τ_a	τ_{SR}
$M87^{\star}$	$6.5 \times 10^9 M_{\odot}$	0.99	$2.1 \times (10^{-21} \sim 10^{-20}) \text{ eV}$	$8.2\times10^{-21}~{\rm eV}$	$5.0\times10^5~{\rm s}$	$> 1.5 \times 10^{12} \mathrm{s}$
Sgr A^*	$4.3 \times 10^6 M_{\odot}$		$3.1 \times (10^{-18} \sim 10^{-17}) \text{ eV}$	$1.2 \times 10^{-17} \text{ eV}$	3.3×10^2 s	$> 1.0 \times 10^9 \rm s$

TABLE I: Typical parameters of the axion superradiance of the two SMBHs, M87^{*} and Sgr A^{*}.

More on EHT measurements

Accretion disk around SMBH gives linearly polarized radiation Millimeter wavelength: optimal for position angle measurements

No spatial resolution . M. D. Johnson et al., Science 350, no. 6265, 1242 (2015) A subset of EHT has achieved at a precision of 3 degree!

BH superradiance

Superradiance condition

$$\omega < \omega_c = \frac{a_J m}{2r_+}$$

a rapidly rotating black hole loses: energy + angular momentum

axion cloud will be produced around BH

SR takes efficiently for the mass range

$$\frac{r_g}{\lambda_C} = \mu M \equiv \alpha \in (0.1, 1),$$

energy in axion cloud can be comparable to BH mass!

BH superradiance

Axion cloud:

Scalars in the Kerr backgrounds

Very similar to the hydrogen solution (non-relativistic limit):

 $a(x^{\mu}) = e^{-i\omega t} e^{im\phi} S_{lm}(\theta) R_{lm}(r)$

reduce to Y_{lm} in spherical non-relativistic limit

$$\alpha \equiv \mu M$$

$$\operatorname{Re}(\omega) \simeq \left(1 - \frac{\alpha^2}{2\bar{n}^2}\right)\mu$$

Imaginary part gives you the super-radiation

Axion cloud populates more efficiently at lower *l*-mode.

m = l mode is more efficient than other *m*-levels.

BH superradiance

Spatial distribution: The ring from EHT has a radius comparable to the peaking radius of the axion cloud $r_{\pm} = r_g \left(1 \pm \sqrt{1 - a_J^2} \right)$ 1.0 0.8 R / R[r_{max}] 0.6 0.4 0.2 ring r_{max} 0.0 10 15 5 20 r / r_a

Y-f. Chen, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, Phys.Rev.Lett. 124 (2020) 061102

Axion cloud solution

Axion Lagrangian including self-interaction:

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\nabla a)^2 - \mu^2 f_a^2 (1 - \cos\frac{a}{f_a}) \right]$$

K-G equation in the Kerr backgrounds

take

$$a = \frac{1}{\sqrt{2\mu}} (e^{-i\mu t}\psi + e^{i\mu t}\psi^*)$$
 slow varing function

gravitational potential

$$S_{\rm NR} = \int d^4x \left(i\psi^* \partial_t \psi - \frac{1}{2\mu} \partial_i \psi \partial_i \psi^* - \frac{\alpha}{r} \psi^* \psi \right) + \underbrace{\left(\frac{(\psi^* \psi)^2}{16f_a^2} \right)}_{16f_a^2}$$

self-interacting potential

Non-linear region

axion self-interaction becomes important when

gravitational potential ~ self-interacting potential

$$\frac{\alpha}{r} \simeq \frac{\mu a_0^2}{4f_a^2}$$

Two possible consequences:

bosenova: a drastic process which explodes away axion cloud steady axion outflow to infinity

numerical simulation has been performed:

H. Yoshino and H. Kodama, Prog. Theor. Phys. 128, 153 (2012), etc

Bosenova

In either scenario, the amplitude of the axion cloud remains O(1) of its maximal value for most of the time

 $\frac{a}{f_a} \sim O(1)$

The axion cloud stays after bosenova

Position angle change

Using $a_0 \approx f_a$ and $\omega \approx \mu$

 $\Delta \Theta_{\max} \simeq -bg_{a\gamma} f_a \cos\left[\mu t_{\text{emit}} + \beta(|\mathbf{x}_{\text{emit}}| = r_{\max})\right],$

Ignore axion density at earth

$$b \equiv a_{max}/f_a$$

$$\Delta\Theta(t, r, \theta, \phi) \approx -\frac{bg_{a\gamma}f_a R_{11}(r)}{R_{11}(r_{\max})}\sin\theta\cos\left[\omega t - m\phi\right].$$
(17)

Require both time and spatial resolution

additional loop suppression to translate fa to axion-photon coupling

$$g_{a\gamma} \equiv \frac{c}{2\pi f_a} \equiv \frac{c_\gamma \alpha_{em}}{4\pi f_a},$$

fermion loop clockwork

$$c_{\gamma} \sim NQ^2.$$

 $c_{\gamma} \sim 2Q^2 q^{N-M}.$

a = c a D

Large

Polarmetric measurements

- Requirements:
 - Concentration of axion: oscillating background fields
 - Stable (position angle) polarized source
 - Search for:
 - Position angle oscillate with time
 - Position angle oscillate with spatial distributions (extended source)

Polarmetric measurements at EHT from the axion cloud!

Position angle change

• temporal dependence for a fixed position

• spatial dependence for a fixed time

Y-f. Chen, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, Phys.Rev.Lett. 124 (2020) 061102

FIG. 2: $\Delta\Theta(t = 0, \theta = \pi/2, r, \phi)$ viewed along the rotating axis of the black hole. The amplitude of oscillation is around $8c^{\circ}$ at $r_{\rm ring}$ for l = 1, m = 1, $\alpha = 0.4$, and $a_J = 0.99$. The region of $r < r_+$ is masked.

Expected Limit

Y-f. Chen, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, Phys.Rev.Lett. 124 (2020) 061102

Constrain the dimensionless coupling with respect to fa

Expected Limit

Real simulation layered with accretion disk backgrounds Y-f. Chen, J. Shu., X. Xiao, Q. Yuan, Y. Zhao, collaboration with EHT

Summary

Ultra-light particles can form an oscillating background, cause extra forces on the observer and the objects we observe Oscillating Velocity change: observed by Gaia Arriving Time (pulse) change: observed by PTA Real data/better sensitivity Supermassive Black holes provides excellent probes to search for axion! A dense axion cloud can build up near by SMBHs. Position angles varies when traveling through the axion cloud Probe the existence of axion clouds by EHT. Different than BH spin measurement. (Nonlinear region) Different than other experiment. (dimensionless coupling)

Detecting axion through quantum sensors

 可以用于其他在重大问题,比如暴涨,宇宙早期 正反物质不对称性,电弱对称性破缺,规范等级 度问题等等。

宇宙轴子能量动量分布

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \cos(m_a t + \phi)$$

Frequency:
$$\omega_a \simeq \text{GHz} \; \frac{m_a}{10^{-6} \; \text{eV}}$$

Coherence:
$$\tau_a \simeq \mathrm{ms} \; \frac{10^{-6} \; \mathrm{eV}}{m_a}$$

$$\tau_a \sim 1/m_a \langle v_{\rm DM}^2 \rangle \sim Q_a/m_a \sim 10^6/m_a$$

$$\lambda_a \sim 1/m_a \sqrt{\langle v_{\rm DM}^2 \rangle} \sim 10^3/m_a$$

Max Exp. Size:
$$\lambda_a \simeq 200 \text{ m} \frac{10^{-6} \text{ eV}}{m_a}$$

动量分布10^-3

$\nabla \times \mathbf{B} \simeq \partial_t \mathbf{E} + \mathbf{J} + g_{a\gamma\gamma} \mathbf{B} \partial_t a$

轴子背景场在有背景磁场的情况下会产生额外的变化电场

51

 $J_{\rm eff}(t) \sim g_{a\gamma\gamma} B_0(t) \sqrt{\rho_{\rm DM}} \cos m_a t$

Resonant EM detection of axion dark matter

Cavity mode equation

1

Source: **a** (almost monochromatic)

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{a\gamma\gamma} \partial_t (\mathbf{B} \partial_t a)$$

Signal Mode: \mathbf{E}_n Pump Mode: **B**

>

Traditional resonant detection matches axion mass with the resonant frequency by using a static B field.

$$\omega_1 \simeq m_a \qquad \partial_t(\mathbf{B}) \simeq 0$$

$$\left(\partial_t^2 + \frac{m_a}{Q_1}\partial_t + m_a^2\right)\mathbf{E}_1 = g_{a\gamma\gamma}\mathbf{B}\sqrt{\rho_{\rm DM}}m_a\cos m_a t$$

Cavity with static B field

 $\left(\partial_t^2 + \frac{m_a}{Q_1}\partial_t + m_a^2\right)\mathbf{E}_1 \sim m_a \cos m_a t$

$$Q_a \sim 10^6$$

 $n_a \sim {
m GHz} \sim 10^{-6}~{
m eV}$
Cavity size ~ (axion mass)^-1

Signal power decreases with axion mass

e.g. ADMX, HAYSTACK

LC Circuit with static B field

Assumptions: T=10 mK, Q=10⁶, 3.5 year integration time, quantum-limited readout

SRF with AC B field

Signal Mode: E₁

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{a\gamma\gamma} \partial_t (\mathbf{B} \partial_t a)$$
Pump Mode: **B**

Static **B**₀:

Oscillating **B**₀:

(almost monochromatic)

Source: a

$$\omega_{1} \simeq m_{a} \qquad \partial_{t}(\mathbf{B}) \simeq 0 \qquad \qquad \omega_{1} \simeq \omega_{0} + m_{a} \qquad \partial_{t}(\mathbf{B}) \simeq i\omega_{0}\mathbf{B}$$
$$\mathbf{E}_{1} \sim \frac{m_{a}g_{a\gamma\gamma}\sqrt{\rho_{\mathrm{DM}}}\mathbf{B}}{m_{a}^{2} - \omega_{1}^{2} + i\frac{m_{a}\omega}{Q_{1}}} \qquad \mathbf{E}_{1} \sim \frac{\omega_{0}g_{a\gamma\gamma}\sqrt{\rho_{\mathrm{DM}}}\mathbf{B}}{(\omega_{0} + m_{a})^{2} - \omega_{1}^{2} + i\frac{(\omega_{0} + m_{a})\omega}{Q_{1}}}$$

Signal enhancement at low frequency $m_a << \omega_0$

SRF with AC B field

Signal Mode: E₁

Source: a (almost monochromatic)

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{a\gamma\gamma} \partial_t (\mathbf{B} \partial_t a)$$
Pump Mode: **B**₀

Oscillating **B**₀:

1

$$\omega_1 \simeq \omega_0 + m_a \qquad \partial_t(\mathbf{B}) \simeq i\omega_0 \mathbf{B}$$

Scanning the axion mass by tuning the differences between two quasi-degenerate modes

SRF with AC B field

Main differences: signal power

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

Main noise for SRF haloscope

Traditional noise: thermal and readout;

Transition from pumping mode due to geometric fluctuation: phase noise, mechanical oscillation noise; (well-studied by pioneer work on ultra high frequency gravitational wave detection. [Class.Quant.Grav. 20 (2003) 3505-3522, gr-qc/ 0502054])

Physics Reach

For thermal and readout noise dominant region:

$$\mathrm{SNR} \sim \frac{\rho_{\mathrm{DM}} V}{m_a \,\omega_1} \left(g_{a\gamma\gamma} \,\eta_{10} \,B_0 \right)^2 \, \left(\frac{Q_a \,Q_{\mathrm{int}} \,t_e}{T} \right)^{1/2}$$

Broadband case

For ultra-light axion, $\omega_1 = \omega_0 + m_a \simeq \omega_0$

Two degenerate and transverse modes can reach the ultra-light region!

frequency = $m_a/2\pi$

A.Berlin, R.T. D'Agnolo, et al, [arXiv:2007.15656 [hep-ph]].

Experimental setup

 Collaboration with SRF group, Institute of Heavy Ion Physics, Peking University

- In progress, quantum limited amplifier designed, cavity noise calibration.
- Path finder with ~ 2 GHz pumping modes and aim for 200 MHz.

Currently the measurements in these region are empty.

Resonator chain and binary tree haloscope

- For single-mode resonator mentioned above, the SNR is bounded by a quantum limit from the readout noise.
- To go beyond quantum limit, one can consider a network of the resonator modes.

• Cover most of the QCD axion dark matter phase space potentially

Y. Chen, M. Jiang, Y. Ma, J. Shu, Y. Yang, in preparation

Conclusion

• The SRF haloscope, with a high quality factor Q and AC magnetic field background, can scan most of the axion dark matter mass window by using both resonant and broadband detection.

• Quantum metrology can play huge rules in the particle physics!

Low scale Phase Transition

NanoGrav see the "linear power" law for SGWB?

Can it be also be the signal for PT? and how about observations from PPTA?

$\bigcirc \bigcirc \bigcirc \bigcirc$

Figure 1: a) pre-fit timing residuals for the test data-set and b) post-fit timing residuals.

