Study the charmonium-like states within the unitary chiral approach

En Wang ZhengZhou University 中国科学技术大学@Nov.15, 2019

outline

- Motivation
- LHCb: $B^+ \rightarrow J/\psi \phi K^+$
- BESIII: e⁺e⁻→γJ/ψφ
- LHCb: $B^+ \rightarrow J/\psi \omega K^+$
- Summary

Charmonium-like states

		е- е+ J/ψ	γ γγγγγ ° γ γγγγγγ č		
X(3872)	Y(4008)	X(3940)	X(3915)	<i>Z_c</i> (3885)	
Y(3940)	Y(4260)	X(4160)	Z(3930)	Z _c (3900)	
Z ⁺ (4430)	Y(4220)		X(4350)	<i>Z_c</i> (4020)	
Z ⁺ (4050)	Y(4320)			<i>Z_c</i> (4025)	
Z ⁺ (4250)	Y(4360)			$Z_b(10610)$	
Y(4140)	Y(4390)			$Z_b(10650)$	
Y(4274)	Y(4630)				
Z ⁺ (4200)	Y(4660)				
Z ⁺ (4240)			H H	.X.Chen,W. Cher	,X.Liu, S.L. Zhu,
X(3823)			PI	nys.Rept. 639 (20)16) 1-121
<i>X_c</i> (3250)					
$P_{c}(4380)$					
<i>P</i> _c (4450)					

X(4140)

D 2009, CDF Colla. PRL 102, 242002

Evidence for X(4140) with sig. 3.8 σ in B⁺ \rightarrow J/ $\psi \phi K^+$

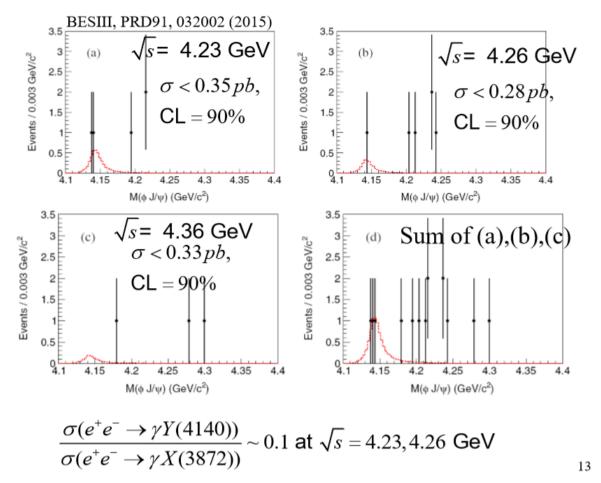
mass : 4143.0 ± 2.9 (stat) ± 1.2 (syst) MeV

width: $11.7^{+8.3}_{-5.0}$ (stat) \pm 3.7(syst) MeV

D 2017, LHCb Colla., PRL 118, 022003

3 fb⁻¹ pp-bar collision data, X(4140) with sig. >5 σ in B⁺ \rightarrow J/ $\psi \phi K^+$, J^{PC}=1⁺⁺, with sig. >4 σ mass: [4146.5 \pm 4.5^{+4.6}_{-2.8} MeV] width: 83 \pm 21⁺²¹₋₁₄ MeV

D 2010, Belle Colla., PRL 104, 112004


```
825 fb<sup>-1</sup> Y(nS) data, no evidence for X(4140),
But evidence X(4350): with sig. 3.2 \sigma in \gamma\gamma \rightarrow J/\psi\phi
mass: 4350.6<sup>+4.6</sup><sub>-5.1</sub>(stat) ± 0.7(syst)
width: 13<sup>+18</sup><sub>-9</sub>(stat) ± 4(syst)
```

Silde of R.G. Ping, 2018.3.31
第一届强子与重味物理理论与实验
联合研讨会@兰州

X(4140)

Search for the Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$ at $\sqrt{s} = 4.23$, 4.26 and 4.36 Ge

Silde of R.G. Ping, 2018.3.31 第一届强子与重味物理理论与实验 联合研讨会@兰州

BESIII

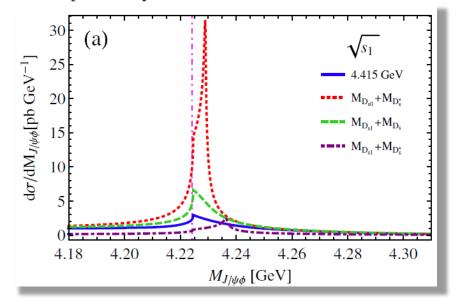
PHYSICAL REVIEW D 91, 032002 (2015)

Search for the Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$ at $\sqrt{s} = 4.23$, 4.26 and 4.36 GeV

Using data samples collected at center-of-mass energies $\sqrt{s} = 4.23$, 4.26, and 4.36 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the production of the charmoniumlike state Y(4140) through a radiative transition followed by its decay to $\phi J/\psi$. No significant signal is observed and upper limits on $\sigma[e^+e^- \rightarrow \gamma Y(4140)] \cdot \mathcal{B}(Y(4140) \rightarrow \phi J/\psi)$ at the 90% confidence level are estimated as 0.35, 0.28, and 0.33 pb at $\sqrt{s} = 4.23$, 4.26, and 4.36 GeV, respectively.

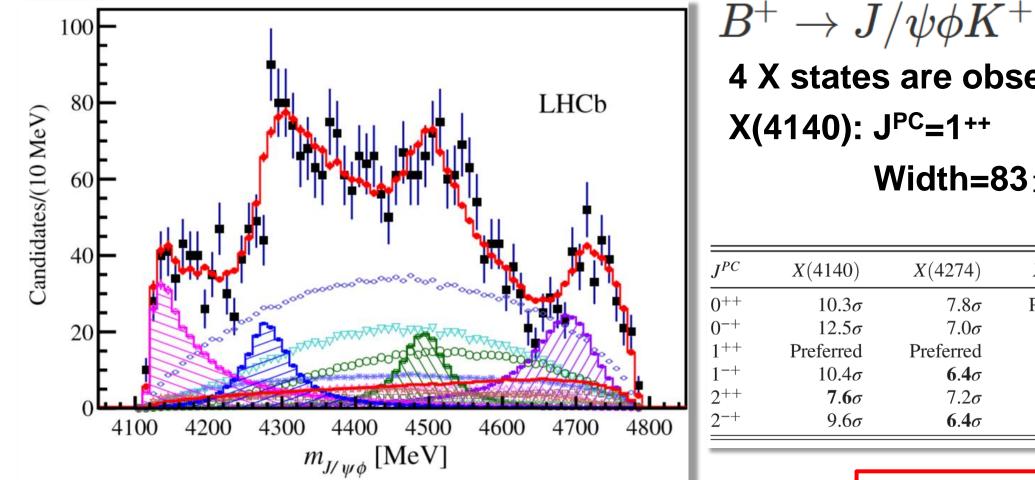
BESIII

PHYSICAL REVIEW D 91, 032002 (2015)


Search for the Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$ at $\sqrt{s} = 4.23$, 4.26 and 4.36 GeV

Using data samples collected at center-of-mass energies $\sqrt{s} = 4.23$, 4.26, and 4.36 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the production of the charmoniumlike state Y(4140) through a radiative transition followed by its decay to $\phi J/\psi$. No significant signal is observed and upper limits on $\sigma[e^+e^- \rightarrow \gamma Y(4140)] \cdot \mathcal{B}(Y(4140) \rightarrow \phi J/\psi)$ at the 90% confidence level are estimated as 0.35, 0.28, and 0.33 pb at $\sqrt{s} = 4.23$, 4.26, and 4.36 GeV, respectively.

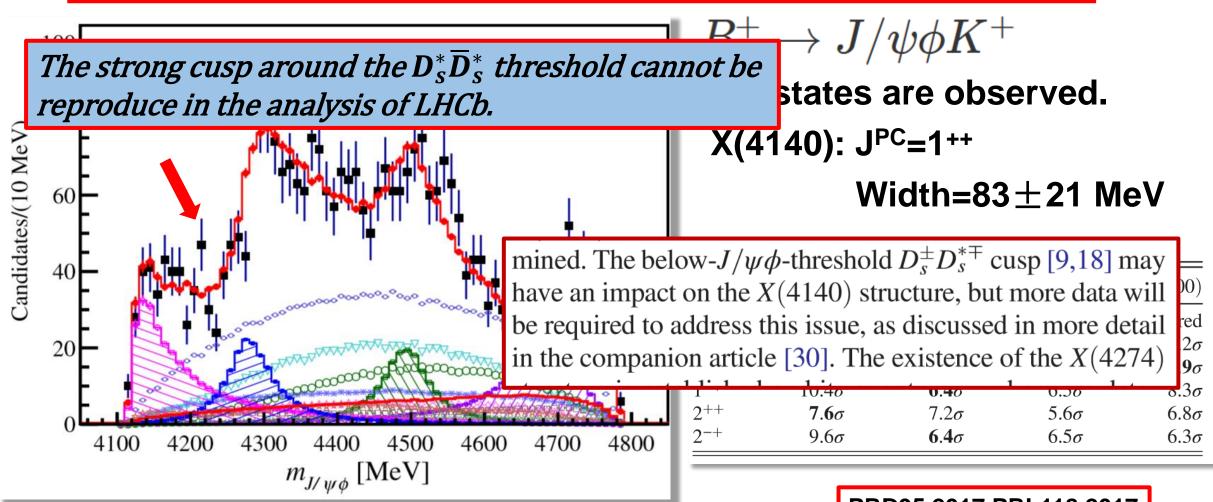
PHYSICAL REVIEW D **93**, 054032 (2016)


Searching for charmoniumlike states with hidden $s\bar{s}$

Xiao-Hai Liu^{1,*} and Makoto Oka^{1,2,†}

The LHCb measurement

4 X states are observed. X(4140): J^{PC}=1⁺⁺ Width= 83 ± 21 MeV


(4140)	X(4274)	X(4500)	X(4700)
10.0			

-+	10.3σ	7.8σ	Preferred	Preferred
+	12.5σ	7.0σ	8.1σ	8.2σ
-+	Preferred	Preferred	5.2σ	4.9σ
+	10.4σ	6.4σ	6.5σ	8.3σ
-+	7.6σ	7.2σ	5.6σ	6.8σ
+	9.6σ	6.4σ	6.5σ	6.3 <i>σ</i>

PRD95,2017,PRL118,2017

The LHCb measurement

PRD95,2017,PRL118,2017

The large width of X(4140)

Experiment	N_B	Mass (MeV)	Width (MeV)	σ	Fraction (%
CDF [1]	58	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0} \pm 3.7$	3.8	
Belle [19]	325	4143.0 fixed	11.7 fixed	1.9	
CDF [26]	115	$4143.4^{+2.9}_{-3.0}\pm0.6$	$15.3^{+10.4}_{-6.1} \pm 2.5$	5.0	$15 \pm 4 \pm 2$
LHCb [21]	346	4143.4 fixed	15.3 fixed	1.4	<7
CMS [23]	2480	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11}\pm19$	5.0	10 ± 3
D0 [24]	215	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6^{+1.0}_{-8.0}$	3.1	$21\pm8\pm4$
BABAR [22]	189	4143.4 fixed	15.3 fixed	1.6	<13
D0 [25]		$4152.5 \pm 1.7^{+6.2}_{-5.4}$	$16.3 \pm 5.6 \pm 11.4$	4.7–5.7	
Average		4147.1 ± 2.4	15.7 ± 6.3	F	PRL118,201

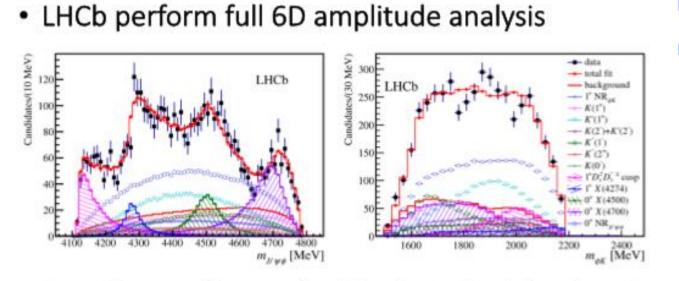
X(4140) $I^G(J^{PC}) = 0^+(1^{++})$

Seen by AALTONEN 2009AH, ABAZOV 2014A, CHATRCHYAN 2014M, AAIJ 2017C in $B^+ \to XK^+$, $X \to J/\psi\phi$, and by ABAZOV 2015M separately in both prompt (4.7 σ) and non-prompt (5.6 σ) production in $p \ \overline{p} \to J/\psi\phi$ + anything. Not seen by SHEN 2010 in $\gamma \gamma \to J/\psi\phi$ and ABLIKIM 2015 in $e^+ e^- \to \gamma J/\psi\phi$ at \sqrt{s} = 4.23, 4.26, 4.36 GeV.

X(4140) MASS	4146.8 ± 2.5 MeV (S = 1.1)
X(4140) WIDTH	19^{+8}_{-7} MeV (S = 1.4)

The large width of X(4140)

Experiment CDF [1]	N _B 58	Mass (MeV) 4143.0 ± 2.9 ± 1.2	Width (MeV) $11.7^{+8.3}_{-5.0} \pm 3.7$	σ 3.8	Fraction (%
Belle [19] CDF [26]	325 115	4143.0 fixed 4143.4 $^{+2.9}_{-3.0} \pm 0.6$	$11.7 \ fixed$ $15.3^{+10.4}_{-6.1} \pm 2.5$	1.9 5.0	$15 \pm 4 \pm 2$
	115	$4145.4_{-3.0} \pm 0.0$	$15.5_{-6.1} \pm 2.5$	5.0	10 1 7 1 1
		n of X(4140), 83	•		
		n of X(4140), 83 surements, an	•		
		• • •	•		


X(4140) $I^G(J^{PC}) = 0^+(1^{++})$

Seen by AALTONEN 2009AH, ABAZOV 2014A, CHATRCHYAN 2014M, AAIJ 2017C in $B^+ \to XK^+$, $X \to J/\psi\phi$, and by ABAZOV 2015M separately in both prompt (4.7 σ) and non-prompt (5.6 σ) production in $p \ \overline{p} \to J/\psi\phi$ + anything. Not seen by SHEN 2010 in $\gamma \gamma \to J/\psi\phi$ and ABLIKIM 2015 in $e^+ e^- \to \gamma J/\psi\phi$ at \sqrt{s} = 4.23, 4.26, 4.36 GeV.

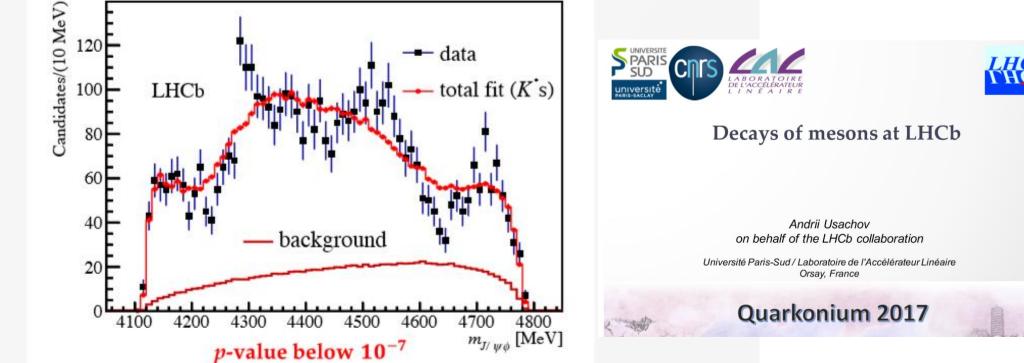
X(4140) MASS	4146.8 ± 2.5 MeV (S = 1.1)
X(4140) WIDTH	19^{+8}_{-7} MeV (S = 1.4)

Exotic states in $B^+ o J/\psi \phi K^+$

LHCb-PAPER-2016-018 PRL 118 (2017)022003 LHCb-PAPER-2016-019 PRD 95 (2017) 012002

> Silde of Y.N.Gao, 2018.3.31 第一届强子与重味物理理论与实验 联合研讨会@兰州

• 4 peaks are observed with X(4140) wider than CDF/DO/CMS


State Signif M [MeV Γ [MeV 1^{++} X(4140) 8.4σ $4160 \pm 4^{+5}_{-2}$ $83 \pm 21^+$ Significant larger at LHCb $4273 \pm 8^{+17}_{-4}$ 1^{++} X(4274) 5.8σ $56 \pm 11^{+}$ $\Gamma^{CDF/D0/CMS} = 15.7 \pm 6.3 \text{ MeV}$ 0^{++} $4506 \pm 11^{+12}_{-15}$ 92 ± 21 X(4500) 6.1σ $4704 \pm 10^{+14}_{-24}$ 0^{++} X(4700) 5.6σ $120 \pm 31^{+42}_{-33}$

Amplitude analysis of $B^+ \rightarrow J/\psi \phi K^+$ decays

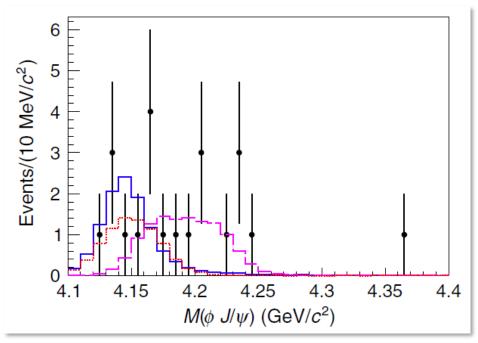
*K**'s-only hypothesis fit:

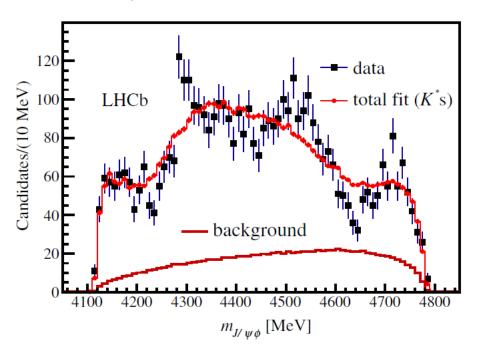
- $M_{\phi K}$ and $M_{J/\psi K}$ can be described by model
- $M_{J/\psi\phi}$ is not described by fit

AND UNIVERSITY

- \rightarrow non- K^* resonances needed:
- $Z^+ \rightarrow J/\psi K^+$ does not lead to significant improvements
- $X \rightarrow J/\psi \phi$

PRD 95,012002 PRL 118,022003


BESIII



Observation of $e^+e^- o \phi \chi_{c1}$ and $\phi \chi_{c2}$ at $\sqrt{s} = 4.600~{ m GeV}$

M. Ablikim *et al.* (BESIII Collaboration) Phys. Rev. D **97**, 032008 – Published 12 February 2018

second systematic. No significant signals are observed for $e^+e^- \rightarrow \phi \chi_{c0}$ and $e^+e^- \rightarrow \gamma X(4140)$ and upper limits on the Born cross sections at 90% C.L. are provided at $\sqrt{s} = 4.600$ GeV.

X(4140)

- Many explanantions:
- >Molecular state:

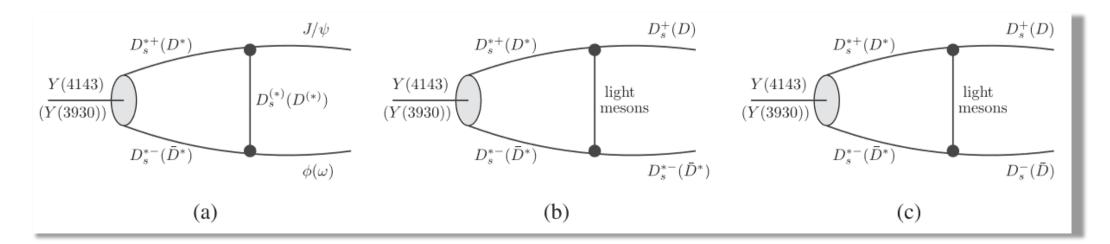
X. Liu, S.L. Zhu, PRD80(2009), G.J. Ding, EPJC64(2009), J.R. Zhang, M.Q.Huang, JPG37(2010),

≻Tetraquark:

F.Stancu, JPG37(2010), Z.G.Wang, IJMPA30(2015)

>Hybrid state:

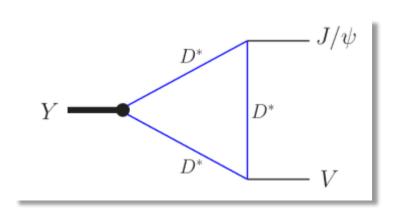
Mahajan, PLB679 (2009), Z.G. Wang, EPJC63 (2009)


Rescattering effect:

X. Liu, PLB680(2009)

X(4140) as the $D_s^* \overline{D}_s^*$ molecule

Meson exchange model, X. Liu, S.L. Zhu, PRD80(2009)



• The X(4140) is predicted to be J^{PC}=0⁺⁺,2⁺⁺

X(4140) as the $D_s^* \overline{D}_s^*$ molecule

 The meson-exchange potentials generated by the Lagrangian of heavy hadron chiral perturbation theory

$$\begin{split} \mathcal{L}_{D^*D^*J_{\psi}} &= ig_{D^*D^*J_{\psi}} J_{\psi}^{\mu} (D_{\mu i}^{*\dagger} \overleftarrow{\partial}_{\nu} D_i^{*\nu} + D_{\nu i}^{*\dagger} \overleftarrow{\partial}^{\nu} D_{\mu i}^{*} \\ &- D_i^{*\dagger\nu} \overrightarrow{\partial}_{\mu} D_{\nu i}^{*}), \\ \mathcal{L}_{D^*D^*V} &= ig_{D^*D^*V} V_{ij}^{\mu} D_{\nu i}^{*\dagger} \overrightarrow{\partial}_{\mu} D_j^{*\nu} + 4if_{D^*D^*V} (\partial^{\mu} V_{ij}^{\nu} \\ &- \partial^{\nu} V_{ij}^{\mu}) D_{\mu i}^{*} D_j^{*\dagger\nu} \end{split}$$

• The X(4140) with J^{PC}=0⁺⁺,2⁺⁺ T. Branz, et. al,PRD80(2009)

X(4140) as the $D_s^*\overline{D}_s^*$ **molecule**

- Vector meson exchange, Bethe-Salpeter quations
 X.Z.Chen, X.F.Iv, R.B.Shi, X.R.Guo, 1512.06483
- η exchange, M. Karliner, NPA954(2016)
- QCD sum rules

J.R. Zhang, M.Q.Huang, JPG37(2010), ZGWang, EPJC63(2009), ZGWang, YF.Tian, IJMPA30(2015)

• η , ϕ , σ exchange, G.J.Ding, EPJC64(2009)

$D_s^*\overline{D}_s^*$ molecule

PHYSICAL REVIEW D 80, 114013 (2009)

Y(3940), Z(3930), and the X(4160) as dynamically generated resonances from the vector-vector interaction

R. Molina¹ and E. Oset¹

¹Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain (Received 24 July 2009; revised manuscript received 28 October 2009; published 15 December 2009)

Vector-vector exchange within local hidden gauge approach

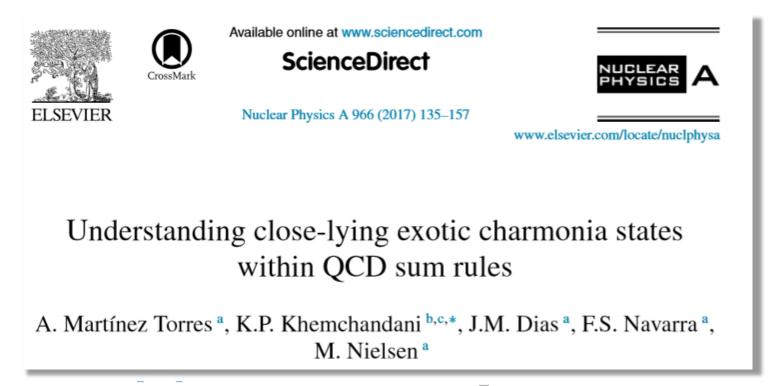
	TABLE V. Couplings g_i in units of MeV for $I = 0$, $J = 2$ (second pole).				
$D^*\bar{D}^*(4017), D^*_s\bar{D}^*_s(4225), K^*\bar{K}^*(1783),$	$\sqrt{s_{\text{pole}}} = 4169 + i66, I^G[J^{\text{PC}}] = 0^+[2^{++}]$				
$\rho \rho (1551), \qquad \omega \omega (1565),$	$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18 927 — <i>i</i> 5524	$K^*\bar{K}^* - 82 + i30$	$\frac{\rho\rho}{70+i20}$	$\omega\omega$ 3 - i2441
$\phi \phi(2039), J/\psi J/\psi(6194), \omega J/\psi(3880),$ $\phi J/\psi(4116), \omega \phi(1802),$	$\phi \phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	$\omega\phi$
$\psi J/\psi$ (4110), $\omega \psi$ (1802),	1257 + i2866	2681 + i940	-866 + i2752	-2617 - i5151	1012 + i1522

$D_s^*\overline{D}_s^*$ molecule

PHYSICAL REVIEW D 80, 114013 (2009) Y(3940), Z(3930), and the $X(4160)$ as dynamically generated resonances from the vector-vector interaction $X(4160)$ $I^G(J^{PC}) = ??(??)$						
(Re • Vector- X(4160) MASS X(4160) WIDTH	8 in $e^+ e^- ightarrow 5$	$J/\psi X \ , \ X o D^*$		4156^{+29}_{-25} MeV 139^{+110}_{-60} MeV	pole).	
$D^* \bar{D}^*$ (4017), $D^*_s \bar{D}^*_s$ (4225), $K^* \bar{K}^*$ (1783), $\rho \rho$ (1551), $\omega \omega$ (1565),	$D^* \bar{D}^*$ 1225 - <i>i</i> 490	$\frac{\sqrt{s_{\text{pole}}} = 4}{D_s^* \bar{D}_s^*}$ $18927 - i5524$	$169 + i66, I^{G}[J^{PC}] = K^* \bar{K}^* - 82 + i30$	$= 0^{+}[2^{++}]$ $\rho \rho$ 70 + i20	$\omega\omega$ 3 - i2441	
$\phi \phi(2039), J/\psi J/\psi(6194), \omega J/\psi(3880), \\ \phi J/\psi(4116), \omega \phi(1802),$	$\frac{\phi \phi}{1257 + i2866}$	$\frac{J/\psi J/\psi}{2681 + i940}$	$\frac{\omega J/\psi}{-866 + i2752}$	$\phi J/\psi$ -2617 - <i>i</i> 5151	$\frac{\omega\phi}{1012 + i1522}$	

PHYSICAL REVIEW D 80, 114013 (2009)

Y(3940), Z(3930), and the X(4160) as dynamically generated resonances from the vector-vector interaction


The $D_s^*\overline{D}_s^*$ molecule with 2⁺⁺ was associated to the X(4160), not the X(4140).

Vector-vector exchange within local hidden gauge approach

	TABLE V. Couplings g_i in units of MeV for $I = 0$, $J = 2$ (second pole).				
$D^*\bar{D}^*(4017), D^*_s\bar{D}^*_s(4225), K^*\bar{K}^*(1783),$	$\sqrt{s_{\text{pole}}} = 4169 + i66, I^G[J^{\text{PC}}] = 0^+[2^{++}]$				
$ ho ho (1551), \qquad \omega \omega (1565),$	$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18 927 — <i>i</i> 5524	$K^*\bar{K}^*$ $-82+i30$	$\frac{\rho\rho}{70+i20}$	$\omega\omega$ 3 - i2441
$\phi \phi(2039), J/\psi J/\psi(6194), \omega J/\psi(3880),$ $\phi J/\psi(4116), \omega \phi(1802),$	$\phi\phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	$\omega\phi$
$\varphi v \gamma \varphi (110), \qquad \omega \varphi (1002),$	1257 + i2866	2681 + i940	-866 + i2752	-2617 - i5151	1012 + i1522

$D_s^*\overline{D}_s^*$ molecule, X(4160)

The comparison made above hints a possible $D_s^* \bar{D}_s^*$ molecule-like nature with quantum numbers $J^{PC} = 2^{++}$ for X(4160) However, our work also implies the existence of a $J^{PC} = 0^{++}$

$D_{s}^{*}\overline{D}_{s}^{*}$ molecule, X(4140) or X(4160)

The quantum numbers of X(4140) established to be 0+(1++)

J^{PC}	<i>X</i> (4140)	X(4274)	X(4500)	X(4700)
0++	10.3σ	7.8σ	Preferred	Preferred
0^{-+}	12.5σ	7.0σ	8.1σ	8.2σ
1^{++}	Preferred	Preferred	5.2σ	4.9σ
1^{-+}	10.4σ	6.4σ	6.5σ	8.3σ
2^{++}	7.6σ	7.2σ	5.6σ	6.8σ
2-+	9.6σ	6.4σ	6.5σ	6.3σ

PRD95,2017,PRL118,2017

X(4140) $I^G(J^{PC}) = 0^+(1^{++})$

Seen by AALTONEN 2009AH, ABAZOV 2014A, CHATRCHYAN 2014M, AAIJ 2017C in $B^+ \to XK^+$, $X \to J/\psi\phi$, and by ABAZOV 2015M separately in both prompt (4.7 σ) and non-prompt (5.6 σ) production in $p \ \overline{p} \to J/\psi\phi$ + anything. Not seen by SHEN 2010 in $\gamma \gamma \to J/\psi\phi$ and ABLIKIM 2015 in $e^+ e^- \to \gamma J/\psi\phi$ at \sqrt{s} = 4.23, 4.26, 4.36 GeV.

<i>X</i> (4140) MASS	4146.8 ± 2.5 MeV (S = 1.1)
<i>X</i> (4140) WIDTH	19^{+8}_{-7} MeV (S = 1.4) PDG2017

$D_s^*\overline{D}_s^*$ molecule, X(4140) or X(4160)

The quantum numbers of X(4140) established to be 0+(1++)

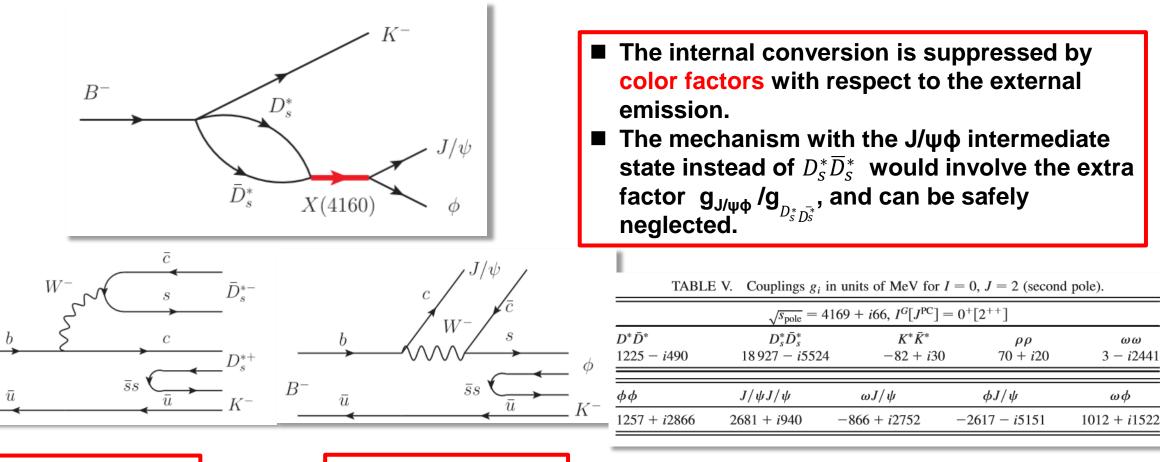
J^{PC}	X(4140)	X(4274)	X(4500)	X(4700)
0++	10.3σ	7.8σ	Preferred	Preferred
0^{-+}	12.5σ	7.0σ	8.1σ	8.2σ
1^{++}	Preferred	Preferred	5.2σ	4.9σ
1-+	10.4-	6.4-	65-	0.2 -

PRD95,2017,PRL118,2017

The association of the $D_s^*\overline{D}_s^*$ molecule with 0++/ 2++ to X(4140) can no longer be supported, and the association of the $D_s^*\overline{D}_s^*$ molecule to X(4160) has much weight.

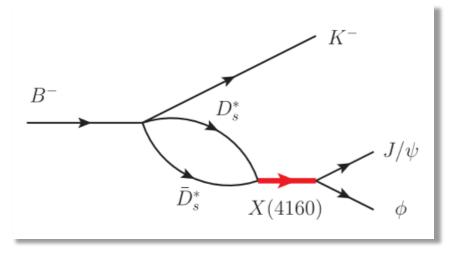
Seen by AALTONEN 2009AH, ABAZOV 2014A, CHATRCHYAN 2014M, AAIJ 2017C in $B^+ \to XK^+$, $X \to J/\psi\phi$, and by ABAZOV 2015M separately in both prompt (4.7 σ) and non-prompt (5.6 σ) production in $p \ \overline{p} \to J/\psi\phi$ + anything. Not seen by SHEN 2010 in $\gamma \ \gamma \to J/\psi\phi$ and ABLIKIM 2015 in $e^+ \ e^- \to \gamma J/\psi\phi$ at \sqrt{s} = 4.23, 4.26, 4.36 GeV.

<i>X</i> (4140) MASS	4146.8 ± 2.5 MeV (S = 1.1)
X(4140) WIDTH	19^{+8}_{-7} MeV (S = 1.4) PDG2017


How is the molecule like?

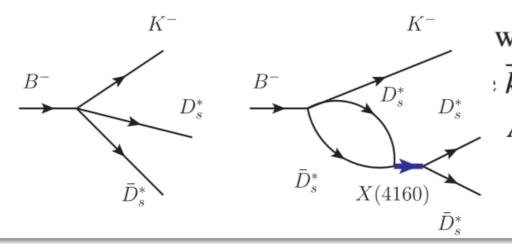
- It decays into a heavy quarkonium plus a light meson with nozero isospin, for instance, Zc, Zb.
- For the molecular states that couple to several hadronhadron channels, one can find a strong and unexpected cusp in one of the weakly coupled channels at the threshold of the channels corresponding to the main component of the molecular state.
- Dai, Dias, Oset, EPJC78(2018)
- Ewang, JJXie, LSGeng, Oset, PRD97(2019); 1806.05113
- Dai,GYWang,Xchen,Ewang,DMLi,Oset,1808.10371

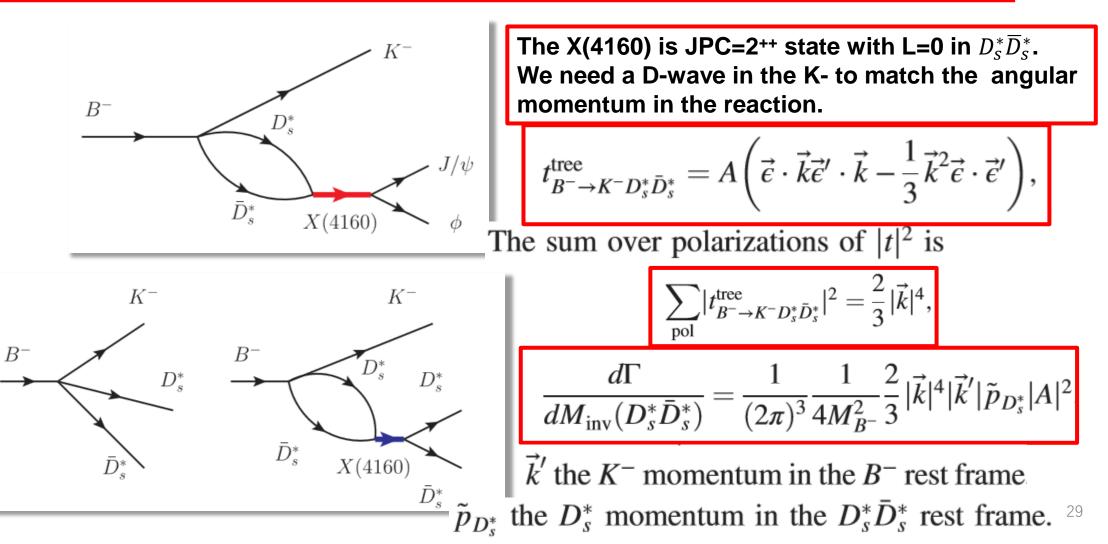
LHCb: B+→J/ψφK+ PRD97(2018)014017



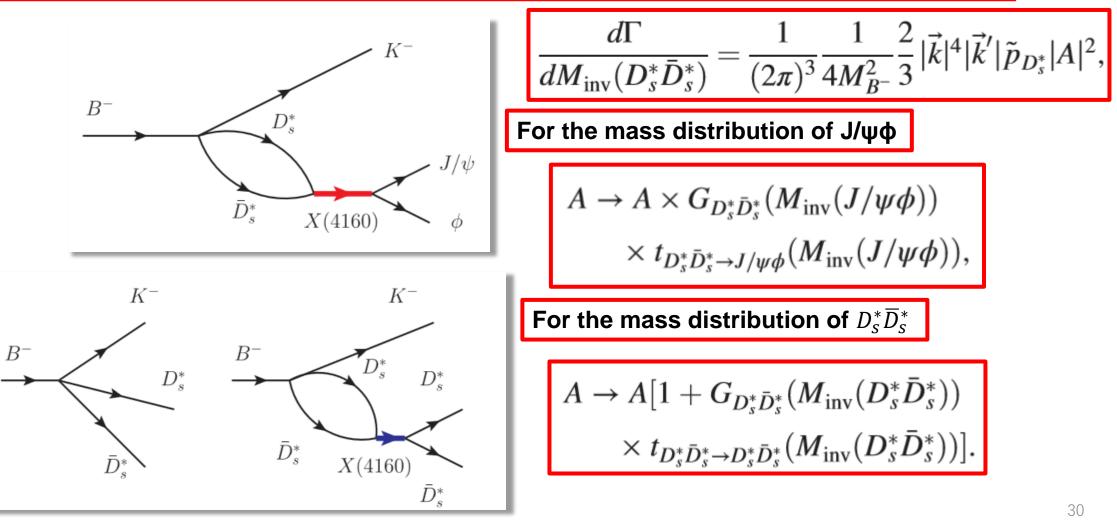
External emission

 B^-


Internal conversion


The X(4160) is JPC=2⁺⁺ state with L=0 in $D_s^* \overline{D}_s^*$. We need a D-wave in the K⁻ to match the angular momentum in the reaction.

$$t_{B^- \to K^- D_s^* \bar{D}_s^*}^{\text{tree}} = A\left(\vec{\epsilon} \cdot \vec{k} \vec{\epsilon}' \cdot \vec{k} - \frac{1}{3} \vec{k}^2 \vec{\epsilon} \cdot \vec{\epsilon}'\right),$$



where $\vec{\epsilon}$, $\vec{\epsilon}'$ are the polarization vectors of D_s^* and \vec{D}_s^* , \vec{k} is the K^- momentum in the $D_s^* \bar{D}_s^*$ rest frame, A is an unknown factor that will be fitted to the data.

The contribution of X(4160)

• G is the loop function, with the cut off method,

$$G_{l} = \int \frac{d^{3}q}{(2\pi)^{3}} \frac{M_{l}}{2\omega_{l}(q)E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon}$$

• The transition amplitudes are,

$D^{*}\bar{D}^{*}(4017)$,	$D_{s}^{*}\bar{D}_{s}^{*}(4225)$), $K^*\bar{K}^*(1783)$,
$\rho \rho$	(1551), ωω(1565),
$\phi \phi$ (2039),	$J/\psi J/\psi$ (6194)), $\omega J/\psi(3880)$,
$\phi J/$	$\psi(4116), \omega_{Q}$	¢(1802),

$$t_{D_s^* \bar{D}_s^* o D_s^* \bar{D}_s^*} = rac{g_{D_s^* \bar{D}_s^*}^2}{M_{
m inv}^2 (D_s^* \bar{D}_s^*) - M_X^2 + iM_X \Gamma_X},$$

 $t_{D_s^* \bar{D}_s^* o J/\psi \phi} = rac{g_{D_s^* \bar{D}_s^*} g_{J/\psi \phi}}{M_{
m inv}^2 (J/\psi \phi) - M_X^2 + iM_X \Gamma_X},$

TABL	E V. Couplings g_i i	n units of MeV for I	J = 0, J = 2 (secon	d pole).
	$\sqrt{s_{\text{pole}}} = 4$	$169 + i66, I^G[J^{PC}] =$	= 0 ⁺ [2 ⁺⁺]	
$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18927 — <i>i</i> 5524	$K^*\bar{K}^*$ $-82+i30$	$\frac{\rho\rho}{70+i20}$	<i>ωω</i> 3 - <i>i</i> 2441
$\phi\phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	$\omega\phi$
1257 + <i>i</i> 2866	2681 + i940	-866 + i2752	-2617 - <i>i</i> 5151	1012 + i1522

The contribution of X(4160)

 $K^*\bar{K}^*(1783)$,

 $\omega J/\psi$ (3880),

 $D_{s}^{*}\bar{D}_{s}^{*}(4225),$

 $J/\psi J/\psi$ (6194),

 $\omega\omega(1565),$

 $\omega\phi(1802),$

• G is the loop function, with the cut off method,

$$G_{l} = \int \frac{d^{3}q}{(2\pi)^{3}} \frac{M_{l}}{2\omega_{l}(q)E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon}$$

The transition amplitudes are,

$$\begin{split} \Gamma_{L} = \Gamma_0 + \Gamma_{J/\psi\phi} + \Gamma_{D_s^*\bar{D}_s^*}, \\ T_{D_s^*\bar{D}_s^* \to D_s^*\bar{D}_s^*} = \frac{g_{D_s^*\bar{D}_s^*}^2}{M_{\text{inv}}^2(D_s^*\bar{D}_s^*) - M_X^2 + iM_X\Gamma_X}, \\ T_{D_s^*\bar{D}_s^* \to J/\psi\phi} = \frac{g_{D_s^*\bar{D}_s^*}g_{J/\psi\phi}}{M_{\text{inv}}^2(J/\psi\phi) - M_X^2 + iM_X\Gamma_X}, \\ T_{D_s^*\bar{D}_s^* \to J/\psi\phi} = \frac{g_{D_s^*\bar{D}_s^*}g_{J/\psi\phi}}{M_{\text{inv}}^2(J/\psi\phi) - M_X^2 + iM_X\Gamma_X}, \\ T_{D_s^*\bar{D}_s^*} = \frac{|g_{D_s^*\bar{D}_s^*}|^2}{8\pi M_X^2} \tilde{p}_{D_s^*}\Theta(M_{\text{inv}}(D_s^*\bar{D}_s^*) - 2M_{D_s^*}). \end{split}$$

 $D^*\bar{D}^*(4017),$

 $\phi \phi$ (2039),

 $\rho \rho (1551),$

 $\phi J/\psi(4116),$

The contribution of X(4140)

 Since X(4140) is 1⁺⁺, the kaon should be in P-wave, and the operator for P-wave is,

$$(\vec{\epsilon}_{J/\psi} \times \vec{\epsilon}_{\phi}) \cdot \vec{k},$$

$$t_{B^- \to K^- D_s^* \bar{D}_s^*}^{\text{tree}} = t_s^*$$

$$A_{-D_s^*\bar{D}_s^*} = A\left(\vec{\epsilon}\cdot\vec{k}\vec{\epsilon}'\cdot\vec{k}-\frac{1}{3}\vec{k}^2\vec{\epsilon}\cdot\vec{\epsilon}'\right)$$

$$\frac{d\Gamma}{M_{\rm inv}(D_s^*\bar{D}_s^*)} = \frac{1}{(2\pi)^3} \frac{1}{4M_{B^-}^2} \frac{2}{3} |\vec{k}|^4 |\vec{k}'| \tilde{p}_{D_s^*} |A|$$

 $M_{\rm inv}(D_s^*\bar{D}_s^*) \to M_{\rm inv}(J/\psi\phi),$

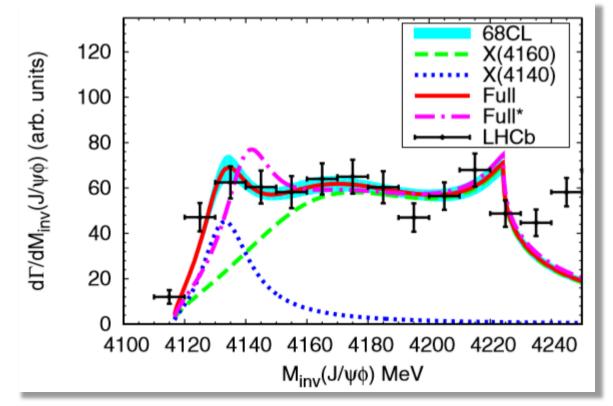
The substitution:

$$A \to \frac{BM_{X(4140)}^4}{M_{\text{inv}}^2(J/\psi\phi) - M_{X(4140)}^2 + iM_{X(4140)}\Gamma_{X(4140)}}$$

with *B* a parameter to be fitted to the data. $M_{X(4140)} = 4132 \text{ MeV}_{33}$

 $\frac{2}{2}|\vec{k}|^4 \to 2|\vec{k}|^2, \qquad \tilde{p}_{D_s^*} \to \tilde{p}_{\phi},$

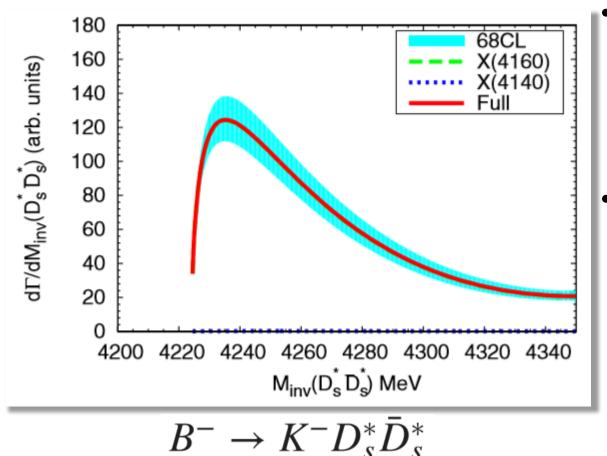
Results

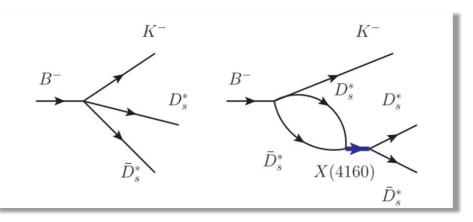

- We fit the data from threshold up to about 4250 MeV.
- 13 data, chi^2/dof=15.3/(13-3)

 $\Gamma_0 = 65.0 \pm 7.1 \text{ MeV}$ (at 68% confidence level), $\Gamma_{J/\psi\phi} \simeq 22.0 \text{ MeV}$ $\Gamma_{X(4160)} \simeq 87.0 \pm 7.1 \text{ MeV}$

$X\!(4160)$ Seen by PAK	$I^G(J^{PC})$ = $??(???)$ HLOV 2008 in $e^+ e^- o J/\psi X$, $X o D^*\overline{D}^*$	
X(4160) MASS	3	4156 ⁺²⁹ ₋₂₅ Me∨
X(4160) WIDT		139 ⁺¹¹⁰ ₋₆₀ MeV

Results




- The Flatte effect is visable, as a sharp fall down of the invariant mass distribution above the $D_s^* \overline{D}_s^*$ threshold.
- The lower part of the spectrum can be obtain from the contribution of X(4160) (2++) and X(4140)(1++, 19 MeV) resonances.
- The cusp of the distribution at the $D_s^* \overline{D}_s^*$ threshold, cannot be accommodated by a Breit-Wigner amplitude, and it indicates that the resonance in that region is tied to the $D_s^* \overline{D}_s^*$ channel.

Results

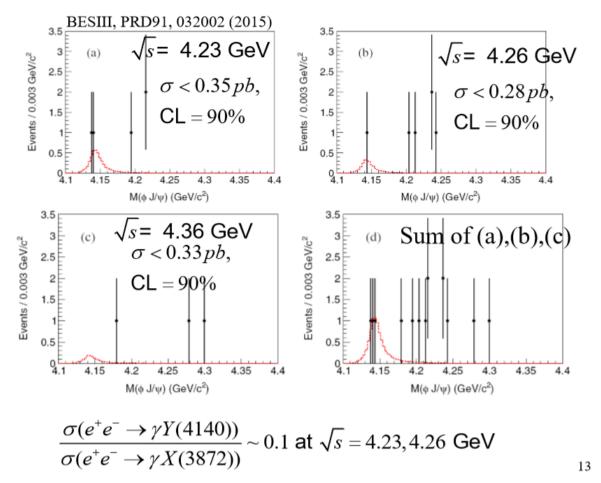
- There is a peak close to the threshold, which should not be misidentified with a new state, but it is the reflection of the X(4160).
- The strength of the peak is the twice of the one of the X(4140).

B^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

 $\begin{array}{ccc} \Gamma_{169} & \overline{D}^{*}(2007)^{0} D_{s1}(2536)^{+} \times \\ & & \mathsf{B}(D_{s1}(2536)^{+} \to \\ & & D^{*}(2007)^{0} K^{+}) \end{array}$ $(5.5 \pm 1.6) \times 10^{-4}$. .

$$\Gamma_{196} \quad \underbrace{D^{*}(2010)^{-} D^{*}(2010)^{+} K^{+}}_{\Gamma_{210}} \qquad (1.32 \pm 0.18) \times 10^{-3} \\ < 8 \qquad \times 10^{-4} \text{ CL} = 90\% \\ \Gamma_{211} \quad \underbrace{D^{*+}_{s} \overline{K}^{0}}_{s} \qquad < 9 \qquad \times 10^{-4} \text{ CL} = 90\% \\ < 9 \qquad \times 10^{-4} \text{ CL} = 90\% \\ \end{cases}$$

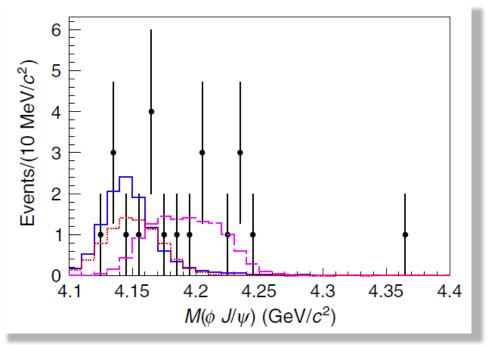

~

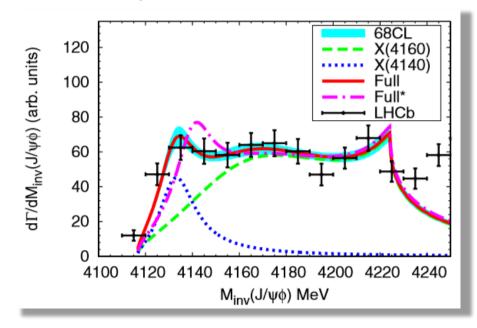
BESIII: $e^+e^- \rightarrow \gamma J/\psi \phi$ arxiv:1806.05113

X(4140)

Search for the Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$ at $\sqrt{s} = 4.23$, 4.26 and 4.36 Ge

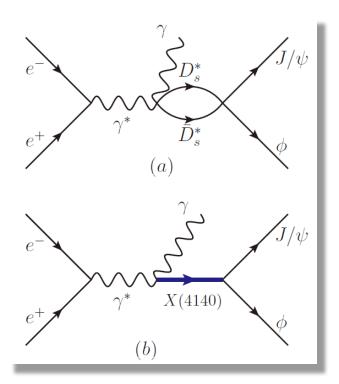
Silde of R.G. Ping, 2018.3.31 第一届强子与重味物理理论与实验 联合研讨会@兰州

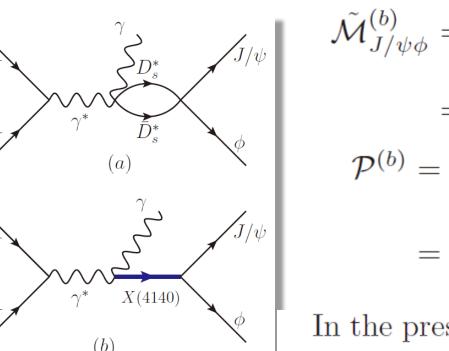

BESIII



Observation of $e^+e^- o \phi \chi_{c1}$ and $\phi \chi_{c2}$ at $\sqrt{s} = 4.600~{ m GeV}$

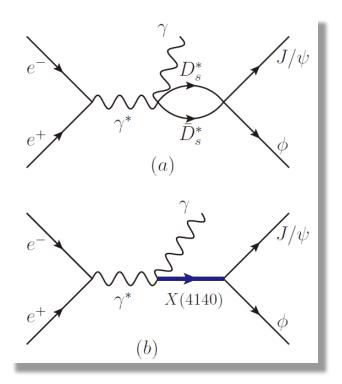
M. Ablikim *et al.* (BESIII Collaboration) Phys. Rev. D **97**, 032008 – Published 12 February 2018


second systematic. No significant signals are observed for $e^+e^- \rightarrow \phi \chi_{c0}$ and $e^+e^- \rightarrow \gamma X(4140)$ and upper limits on the Born cross sections at 90% C.L. are provided at $\sqrt{s} = 4.600$ GeV.


The mechanism for J/ψφ production

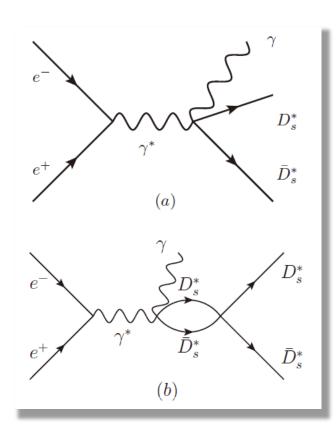
$$\begin{split} \tilde{\mathcal{M}}_{J/\psi\phi}^{(a)} &= A \times G_{D_s^* \bar{D}_s^*} t_{D_s^* \bar{D}_s^*, J/\psi\phi} \times \mathcal{P}^{(a)} \\ &= \mathcal{M}_{J/\psi\phi}^{(a)} \times \mathcal{P}^{(a)}, \\ \mathcal{P}^{(a)} &= \left[\frac{1}{2} \left(\epsilon_{1i} \epsilon_{2j} + \epsilon_{1j} \epsilon_{2i} \right) - \frac{1}{3} \vec{\epsilon}_1 \cdot \vec{\epsilon}_2 \delta_{ij} \right] \\ &\times \left[\frac{1}{2} \left(\epsilon_{\phi i} \epsilon_{J/\psi j} + \epsilon_{\phi j} \epsilon_{J/\psi i} \right) - \frac{1}{3} \vec{\epsilon}_{\phi} \cdot \vec{\epsilon}_{J/\psi} \delta_{ij} \right] \\ t_{D_s^* \bar{D}_s^*, J/\psi\phi} &= \frac{g_{D_s^* \bar{D}_s^*} g_{J/\psi\phi}}{M_{\text{inv}}^2 (J/\psi\phi) - M_{X_1}^2 + i \Gamma_{X_1} M_{X_1}}, \\ g_{D_s^* \bar{D}_s^*} &= (18927 - 5524i) \text{ MeV} \\ g_{J/\psi\phi} &= (-2617 - 5151i) \text{ MeV} \end{split}$$

The mechanism for J/ψφ production



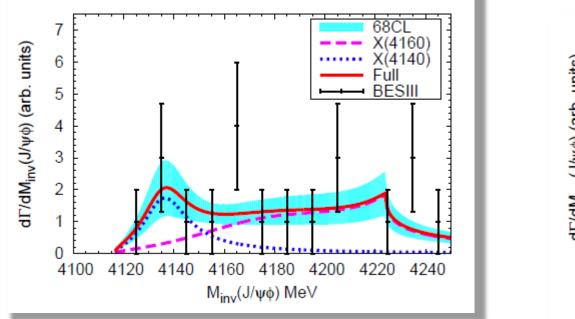
$$\tilde{\mathcal{M}}_{J/\psi\phi}^{(b)} = \frac{BM_{X_2}^2 \times \mathcal{P}^{(b)}}{M_{\text{inv}}^2 (J/\psi\phi) - M_{X_2}^2 + iM_{X_2}\Gamma_{X_2}} \\ = \mathcal{M}_{J/\psi\phi}^{(b)} \times \mathcal{P}^{(b)}, \\ \mathcal{P}^{(b)} = \sum_{\text{pol}} \left[(\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot \vec{\epsilon}_{X_2} \right] \left[\vec{\epsilon}_{X_2} \cdot \left(\vec{\epsilon}_\phi \times \vec{\epsilon}_{J/\psi} \right) \right] \\ = (\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot \left(\vec{\epsilon}_\phi \times \vec{\epsilon}_{J/\psi} \right),$$

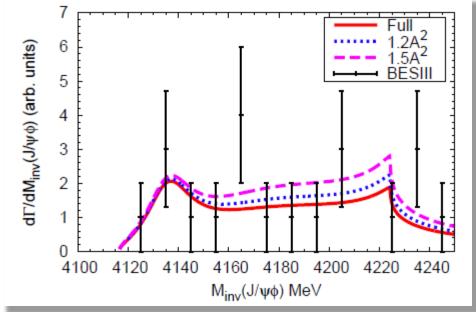
In the present work, the only relevant thing is that the two structures $\mathcal{P}^{(a)}$ and $\mathcal{P}^{(b)}$ do not interfere, and there are no momenta involved, unlike in the decay $B^- \to J/\psi\phi K$ [4].


The mechanism for J/ψφ production

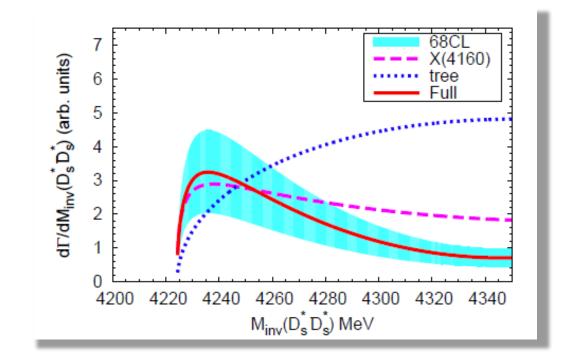
$$\frac{d\Gamma}{dM_{\rm inv}(J/\psi\phi)} = \frac{1}{(2\pi)^3} \frac{1}{4s} k' \tilde{p}_{\phi} \left[|\mathcal{M}_{J/\psi\phi}^{(a)}|^2 + |\mathcal{M}_{J/\psi\phi}^{(b)}|^2 \right]$$
$$k' = \frac{\lambda^{1/2} \left(s, 0, M_{\rm inv}^2 (J/\psi\phi) \right)}{2\sqrt{s}}$$
$$\tilde{p}_{\phi} = \frac{\lambda^{1/2} (M_{\rm inv}^2 (J/\psi\phi), m_{J/\psi}^2, m_{\phi}^2)}{2M_{\rm inv} (J/\psi\phi)}$$

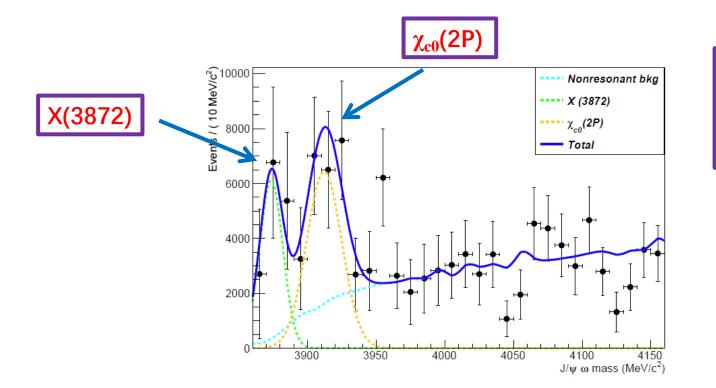
The mechanism for D_s*D_s* production




$$\frac{d\Gamma}{dM_{\rm inv}(D_s^*\bar{D}_s^*)} = \frac{1}{(2\pi)^3} \frac{1}{4s} k' \tilde{p}_{D_s^*} |\mathcal{M}_{D_s^*\bar{D}_s^*}|^2,$$
$$\mathcal{M}_{D_s^*\bar{D}_s^*} = A \left[T^{\rm tree} + T^{X(4160)} \right]$$
$$= A \left[1 + G_{D_s^*\bar{D}_s^*} \left(M_{\rm inv}(D_s^*\bar{D}_s^*) \right) \times t_{D_s^*\bar{D}_s^*, D_s^*\bar{D}_s^*} \left(M_{\rm inv}(D_s^*\bar{D}_s^*) \right) \right]$$

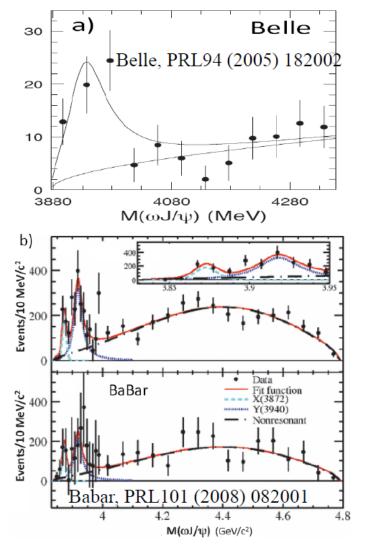
$$\overline{D_s^* \bar{D}_s^*, D_s^* \bar{D}_s^*} = \frac{1}{M_{\text{inv}}^2 (D_s^* \bar{D}_s^*) - M_{X_1}^2 + i\Gamma_{X_1} M_X}$$


Results



LHCb: B+ $\rightarrow J/\psi\omega K^+$ arxiv:1808.10373

LHCb thesis 2014-243



 $\chi_{c0}(2P)$: X(3915) Is X(3915) the $\chi_{c0}(2P)$? HXChen, Phys.Rept. 639 (2016) Phys.Rev. D69 (2004) 094019

Figure 4.1: Fitted $J/\psi \omega$ efficiency-corrected invariant mass distribution.

X(3915)

 $\Box X(3915)$ in $B \rightarrow K \omega J/\psi$ observed by Belle and Babar

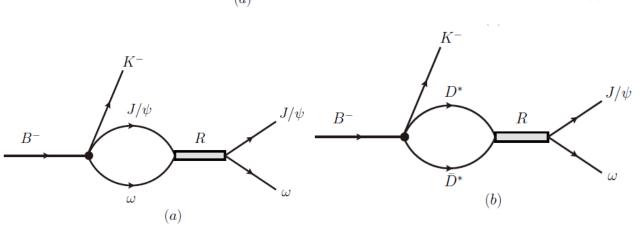
Belle: S-wave Breit-Wigner $M = 3943 \pm 17 \text{ MeV}$ $\Gamma = 87 \pm 24 \text{ MeV}$

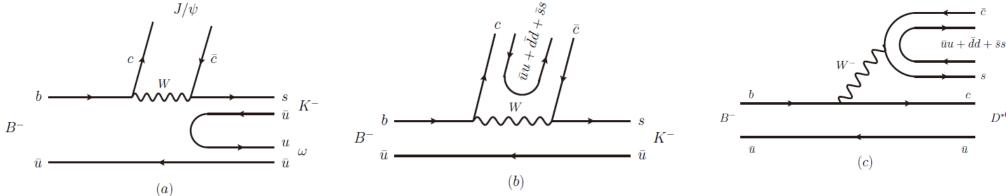
Babar:

 $M = 3919 \pm 4 \text{ MeV}$ $\Gamma = 31 \pm 11 \text{ MeV}$

Weighted average:

 $M = 3920 \pm 4 \text{ MeV}$ $\Gamma = 41 \pm 10 \text{ MeV}.$




D*D* molecule states,X(3940),X(3930)

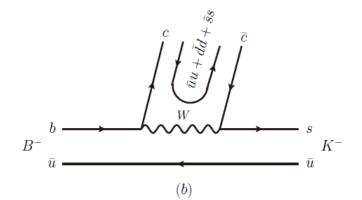
PHYSICAL REVIEW D 80, 114013 (2009)

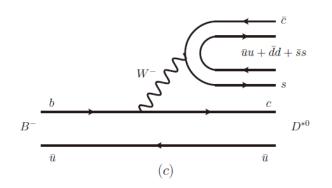
Y(3940), *Z*(3930), and the *X*(4160) as dynamically generated resonances from the vector-vector interaction

T.	ABLE II. Couplin	R. Molina ¹ a gs g_i in units of Me						
$\sqrt{s_{\text{pole}}} = 3943 + i7.4, \ I^G[J^{\text{PC}}] = 0^+[0^{++}]$								
$D^* \bar{D}^*$ 18 810 - <i>i</i> 682	$D_s^* \bar{D}_s^*$ 8426 + <i>i</i> 1933	$\frac{K^*\bar{K}^*}{10-i11}$	$ \rho \rho -22 + i47 $	$\omega\omega$ 1348 + <i>i</i> 234	-			
$\phi \phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	$\omega\phi$	-			
<u>-1000 - i150</u>	417 + i64	-1429 - <i>i</i> 216	889 + i196	-215 - i107		gs g_i in units of MeV	<i>V</i> for $I = 0, J = 2$.	
				$\sqrt{s_{\text{pole}}} = 3922 + i26, I^G[J^{\text{PC}}] = 0^+[2^{++}]$				
				$D^* \bar{D}^*$ 21 100 - <i>i</i> 1802	$\frac{D_s^*\bar{D}_s^*}{1633+i6797}$	$\frac{K^*\bar{K}^*}{42+i14}$	$\frac{ ho ho}{-75+i37}$	$\omega\omega$ 1558 + <i>i</i> 1821
				$\phi \phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	$\omega\phi$
				-904 - i1783	1783 + i197	-2558 - i2289	918 + i2921	91 - <i>i</i> 78450

The reaction

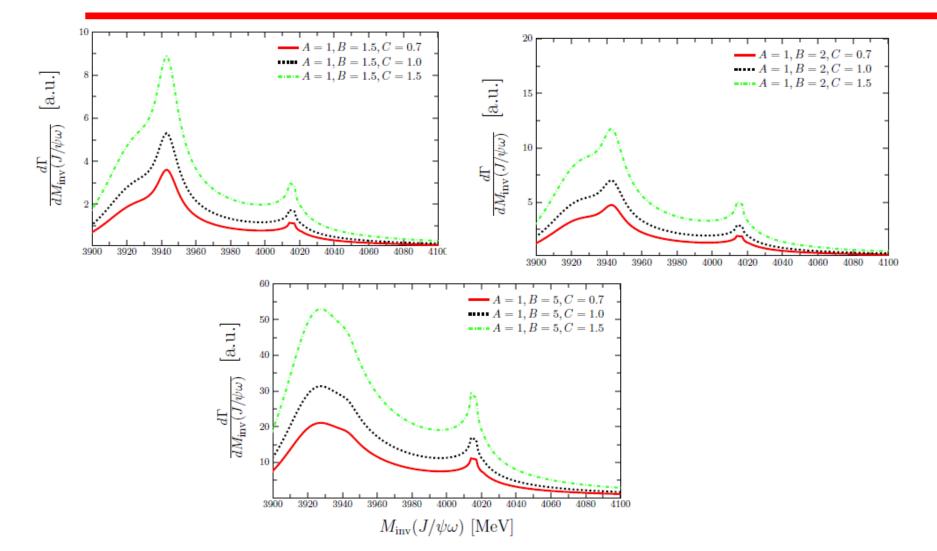
 D^{*0}


$$\begin{split} \left| H \right\rangle &= \left| (D^{*0} \bar{D}^{*0} + D^{*+} \bar{D}^{*-} + D^{*+}_s \bar{D}^{*-}_s + 3 \, C \, D^{*0} \bar{D}^{*0}) K^- \right\rangle \\ &= \left| \left[(1+3 \, C) D^{*0} \bar{D}^{*0} + D^{*+} \bar{D}^{*-} + D^{*+}_s \bar{D}^{*-}_s \right] K^- \right\rangle. \end{split}$$


Tree level

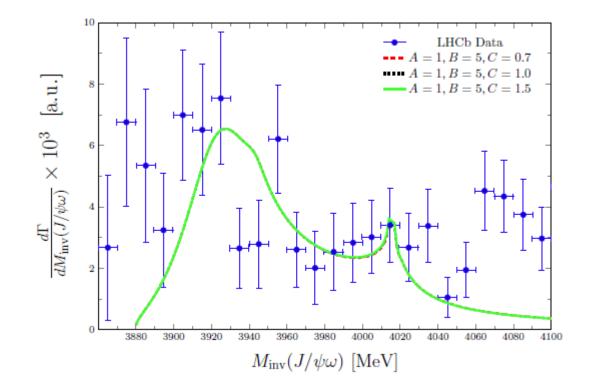
$$\begin{split} \left| H \right\rangle &= \left| (D^{*0} \bar{D}^{*0} + D^{*+} \bar{D}^{*-} + D^{*+}_s \bar{D}^{*-}_s + 3 C D^{*0} \bar{D}^{*0}) K^{-} \right\rangle \\ &= \left| \left[(1 + 3 C) D^{*0} \bar{D}^{*0} + D^{*+} \bar{D}^{*-} + D^{*+}_s \bar{D}^{*-}_s \right] K^{-} \right\rangle. \end{split}$$

$$\begin{split} t^{tree}_{B^- \to K^- D^{*0} \bar{D}^{*0}} &= \left[A \, |\vec{k}_{\rm av}|^2 \, \vec{\epsilon} \cdot \vec{\epsilon}' \\ &+ B \left(\vec{\epsilon} \cdot \vec{k} \vec{\epsilon}' \cdot \vec{k} - \frac{1}{3} |\vec{k}|^2 \, \vec{\epsilon} \cdot \vec{\epsilon}' \right) \right] \left(1 + 3 \, C \right), \\ t^{tree}_{B^- \to K^- D^{*+} D^{*-}} &= A \, |\vec{k}_{\rm av}|^2 \, \vec{\epsilon} \cdot \vec{\epsilon}' \\ &+ B \left(\vec{\epsilon} \cdot \vec{k} \vec{\epsilon}' \cdot \vec{k} - \frac{1}{3} |\vec{k}|^2 \, \vec{\epsilon} \cdot \vec{\epsilon}' \right), \\ t^{tree}_{B^- \to K^- D^{*+}_s D^{*-}_s} &= A \, |\vec{k}_{\rm av}|^2 \, \vec{\epsilon} \cdot \vec{\epsilon}' \\ &+ B \left(\vec{\epsilon} \cdot \vec{k} \vec{\epsilon}' \cdot \vec{k} - \frac{1}{3} |\vec{k}|^2 \, \vec{\epsilon} \cdot \vec{\epsilon}' \right), \end{split}$$


HN SZHOU

Final state interaction

$$\begin{split} t_{1} &= G_{D^{*0}\bar{D}^{*0}}(M_{\text{inv}}) t_{D^{*0}\bar{D}^{*0}\to J/\psi\omega}^{I}(1+3C) \\ &+ G_{D^{*+}D^{*-}}(M_{\text{inv}}) t_{D^{*+}D^{*-}\to J/\psi\omega}^{I} \\ &+ G_{D^{*+}D^{*-}}(M_{\text{inv}}) t_{D^{*+}D^{*-}\to J/\psi\omega}^{I}, \\ &+ G_{D^{*+}D^{*-}}(M_{\text{inv}}) t_{D^{*+}D^{*-}\to J/\psi\omega}^{I}, \\ t_{2} &= G_{D^{*0}\bar{D}^{*0}}(M_{\text{inv}}) t_{D^{*+}D^{*-}\to J/\psi\omega}^{I}(1+3C) \\ &+ G_{D^{*+}D^{*-}}(M_{\text{inv}}) t_{D^{*+}D^{*-}\to J/\psi\omega}^{I}(1+3C) \\ &+ G_{D^{*+}D^{*-}}(M_{\text{inv}}) t_{D^{*+}D^{*-}\to J/\psi\omega}^{I}, \\ &+ G_{D^{*+}D^{*-}}(M_{$$


Results

Results

- The X(4140) deduced from the $B^+ \rightarrow J/\psi \phi K^+$ by LHCb has a large width 83 \pm 21 MeV vs. 19MeV of PDG.
- Many explanations of X(4140): molecular state, hybrid state, tetraquark state.
- X(4140) as the $D_s^* \overline{D}_s^*$ molecule, with JPC=0⁺⁺, 2⁺⁺, in contrast with the recent experimental measurement, PDG(1⁺⁺).
- X(4160) as the $D_s^* \overline{D}_s^*$ molecule, with JPC=2++, large couplings to $D_s^* \overline{D}_s^*$, J/ $\psi\phi$ channels.

Summary

- Taking into account the contribution of X(4160) and X(4140), the lower part of the spectrum can be well reproduced.
- The cusp of the distribution at the $D_s^*\overline{D}_s^*$ threshold, cannot be accommodated by a Breit-Wigner amplitude, and it indicates that the resonance in that region is tied to the $D_s^*\overline{D}_s^*$ channel.
- We predict the $D_s^* \overline{D}_s^*$ distribution for $B^- \to K^- D_s^* \overline{D}_s^*$ reaction. There is a peak close to the threshold, and it is the reflection of the X(4160).

Summary

- We analysed the process of $e^+e^- \rightarrow \gamma J/\psi \phi$, by considering the contributions of the molecular state X(4160), and the X(4140) state.
- Our results show that some structures can be associated to the X(4160) and X(4140) states.
- The reflection effect of X(4160) is clear in the Ds*Ds* distribution, which should not be misidentified as a new resonance.
- We strongly call for a measurment with high precise.

Summary

- We have presented a theoretical interpretation on the $B^+ \rightarrow J/\psi \omega K^+$ reaction in the range of $J/\psi \omega$ invariant mass 3930-4050 MeV, and found that two resonances X(3940) and X(3930), strongly coupled to D*D* in JPC=0++ and 2++, give rise to a strong cusp at D*D* threshold, which is supported by LHCb measurement.
- Our work should serve as a motivation to improve the statistic.

Thanks for your attention!