CP Violation in charm

Fu-Sheng Yu Lanzhou University

24 May, 2019 @ USTC, Hefei

Thank Wenbiao for invitation !

LHCb observes charm CPV

1903.08726

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$$
$$= (-1.54 \pm 0.29) \times 10^{-3}$$

• > 5σ , first observation of CPV in charm

LHCb observes charm CPV

<u>1964</u> Strange particles: *CP* violation in *K* meson decays J. W. Cronin, V. L. Fitch *et al.*

2001 Beauty particles: *CP* violation in *B*⁰ meson decays BaBar and Belle collaborations

2019 Charm particles: *CP* violation in *D*⁰ meson decays LHCb collaboration

TODAY

An important milestone in particle physics

- Matter-Antimatter asymmetry of the Universe
- Sakharov conditions: [Sakharov, 1967]
 - 1) C and CP violation
 - 2) Baryon number violation
 - 3) Out-of-equilibrium dynamics

CP violation

Asymmetry between particle and anti-particle

$$A_{CP}(f; t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to f)}$$

 Non-vanishing Acp requires two terms of amplitudes, with different weak phases and strong phases

$$A = A_1 e^{i\phi_1} e^{i\delta_1} + A_2 e^{i\phi_2} e^{i\delta_2}$$

$$\begin{split} A_{CP} &\approx 2r\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) \\ r &= \frac{|A_2|}{|A_1|} \ll 1 \end{split}$$

 $\lambda = 0.225$

Outline

1. CPV in Cabibbo-suppressed processes • $\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-)$

2. CPV in Cabibbo-favored D to neutral Kaons

1. CPV in Singly Cabibbo-Suppressed (SCS) modes

Direct CPV in charm Scenario 1 : SCS

CPV in SCS decays: tree v.s. penguin

- * Ambiguity in penguins
 - heavy quark expansion 1/m_c, m_c=1.3GeV, converges slowly in exclusive decays

* $\Delta A_{CP}(K^+K^-, \pi^+\pi^-)$ predicted from 10-4 to 10-2

Grossman, Kagan, Nir, '07; Bigi, Paul, '11; Isidori, Kamenik, Ligeti, Perez, '11; Brod, Grossmann, Kagan, Zupan, '11, '12; Feldmann, Nandi, Soni, '12; Bhattarcharya, Gronau, Rosner, '12; Cheng, Chiang, '12; Li, Lu, **FSY**, '12; Franco, Mishima, Silvestrini, '12; Hiller, Jung, Schacht, '12. Khodjamirian, Petrov, 17.

Cheng, Chiang, '12: $(-1.51 \pm 0.04) \times 10^{-3}$

Li, Lu, **FSY**, '12 : $(-0.6 \sim -1.9) \times 10^{-3}$

Measurements of ΔA_{CP}

Measurements	ΔΑ _{CP}	Publication	World Average
2011LHCb (D*)	(-0.82±0.24)%	PRL108,111602	
2012 CDF	(-0.62±0.23)%	PRL109,111801	(-0.74±0.15)%
2012 Belle	(-0.87±0.41)%	1212.1975	
2013LHCb (D*)	(-0.34±0.18)%	LHCb- CONF-2013-03	
2013LHCb (B)	(+0.49±0.33)%	PLB723(2013)33	(-0.33±0.12)%
2014LHCb (B)	(+0.14±0.18)%	JHEP07(2014)041	(-0.25±0.10)%
2016LHCb (D*)	(-0.10±0.09)%	PRL116,191601	(-0.14±0.07)%
2019LHCb(all)	(-0.15±0.03)%	1903.08726	(-0.16±0.03)%

Exp Averages of ΔA_{CP}

Understanding charm CPV

$$\mathcal{A}(D^0 \to K^+ K^-) = \lambda_s \mathcal{T}^{KK} + \lambda_b \mathcal{P}^{KK},$$
$$\mathcal{A}(D^0 \to \pi^+ \pi^-) = \lambda_d \mathcal{T}^{\pi\pi} + \lambda_b \mathcal{P}^{\pi\pi},$$

Li, Lu, **FSY**, PRD86,036012(2012); 1903.10638

topological approach

Li, Lu, FSY, '12; Cheng, Chiang, '12

 $\frac{\mathcal{P}^{\pi\pi}}{\mathcal{T}^{\pi\pi}} = 0.66e^{i134^{\circ}}, \quad \text{and} \quad \frac{\mathcal{P}^{KK}}{\mathcal{T}^{KK}} = 0.45e^{i131^{\circ}}$

$\Delta U = 0$ over $\Delta U = 1$

Grossman, Schacht, '19

 $|\tilde{p}_0|\sin(\delta_{\rm strong}) = 0.65 \pm 0.11$

Understand: tree —> penguin; Branching ratio —> CPV

The QCD "dilemma"

Topological Amplitudes

- According to the weak flavour flows
- Including all strong interaction effects
- Amplitudes extracted from data

Chau,86'; Chau,Cheng,87'; Bhattacharya, Rosner, 08'; Cheng, Chiang,10'

 Always in the flavour SU(3) symmetry limit, but losing predictive power

Factorization-Assisted Topological-Amplitude Approach (FAT)

- Dynamics In factorization:
 - Short-distance: Wilson coefficients

Long-distance: hadronic matrix elements

Factorization-Assisted Topological-Amplitude Approach (FAT)

W

(d) E

W

(c) A

- Dynamics In factorization:
 - Short-distance: Wilson coefficients

Non-perturbative quantities

Extracted fron

W-annihilation (A) W-exchange (E)

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_\pi^2} \right)$$

A:
$$b_{q,s}^{A}(\mu) = C_{1}(\mu) \chi_{q,s}^{A} e^{i\phi_{q,s}^{A}}$$

E: $b_{q,s}^{E}(\mu) = C_{2}(\mu) \chi_{q,s}^{E} e^{i\phi_{q,s}^{E}}$
J(3) breaking effects
A: $b_{q,s}^{A}(\mu) = C_{1}(\mu) \chi_{q,s}^{A} e^{i\phi_{q,s}^{A}}$
nonperturbative contributions

Modes	Br(exp)	Br(this work)	$A_{CP}^{\rm SM} \times 10^{-3}$
$D^0 o \pi^+ \pi^-$	1.45 ± 0.05	1.43	0.58
$D^0 \rightarrow K^+ K^-$	4.07 ± 0.10	4.19	-0.42
$D^0 \rightarrow K^0 \bar{K}^0$	0.320 ± 0.038	0.36	1.38
$D^0 ightarrow \pi^0 \pi^0$	0.81 ± 0.05	0.57	0.05
$D^0 ightarrow \pi^0 \eta$	0.68 ± 0.07	0.94	-0.29
$D^0 o \pi^0 \eta'$	0.91 ± 0.13	0.65	1.53
$D^0 ightarrow \eta \eta$	1.67 ± 0.18	1.48	0.18
$D^0 o \eta \eta'$	1.05 ± 0.26	1.54	-0.94
$D^+ ightarrow \pi^+ \pi^0$	1.18 ± 0.07	0.89	0
$D^+ \rightarrow K^+ \bar{K}^0$	6.12 ± 0.22	5.95	-0.93
$D^+ ightarrow \pi^+ \eta$	3.54 ± 0.21	3.39	-0.26
$D^+ ightarrow \pi^+ \eta^\prime$	4.68 ± 0.29	4.58	1.18
$D^+_S o \pi^0 K^+$	0.62 ± 0.23	0.67	0.39
$D_S^+ \rightarrow \pi^+ K^0$	2.52 ± 0.27	2.21	0.84
$D_S^+ \to K^+ \eta$	1.76 ± 0.36	1.00	0.70
$D_S^+ \to K^+ \eta'$	1.8 ± 0.5	1.92	-1.60

2. then predict charm CPV

1. Understand QCD dynamics @ 1GeV by Branching Ratios

Modes	Br(exp)	Br(this work)	$A_{CP}^{\rm SM} \times 10^{-3}$
$D^0 \rightarrow \pi^+ \pi^-$	1.45 ± 0.05	1.43	$\begin{array}{c} 0.58 \\ -0.42 \end{array} \triangleright \Delta A_{CP}^{\rm SM} = -1 \times 10^{-3} \end{array}$
$D^0 \rightarrow K^+ K^-$	4.07 ± 0.10	4.19	

- 1. Understand QCD dynamics @ 1GeV by Branching Ratios
- 2. Then predict charm CPV

Factorization-Assisted Topological approach

Modes	Br(exp)	Br(this work)	$A_{CP}^{\rm SM} \times 10^{-3}$
$D^0 o \pi^+ \pi^-$	1.45 ± 0.05	1.43	0.58
$D^0 \rightarrow K^+ K^-$	4.07 ± 0.10	4.19	-0.42
$D^0 \rightarrow K^0 \bar{K}^0$	0.320 ± 0.038	0.36	1.38
$D^0 ightarrow \pi^0 \pi^0$	0.81 ± 0.05	0.57	0.05
$D^0 o \pi^0 \eta$	0.68 ± 0.07	0.94	-0.29
$D^0 \rightarrow \pi^0 \eta'$	0.91 ± 0.13	0.65	1.53
$D^0 o \eta \eta$	1.67 ± 0.18	1.48	0.18
$D^0 \rightarrow \eta \eta'$	1.05 ± 0.26	1.54	-0.94
$D^+ o \pi^+ \pi^0$	1.18 ± 0.07	0.89	0
$D^+ \rightarrow K^+ \bar{K}^0$	6.12 ± 0.22	5.95	-0.93
$D^+ o \pi^+ \eta$	3.54 ± 0.21	3.39	-0.26
$D^+ ightarrow \pi^+ \eta'$	4.68 ± 0.29	4.58	1.18
$D^+_S o \pi^0 K^+$	0.62 ± 0.23	0.67	0.39
$D_S^+ \rightarrow \pi^+ K^0$	2.52 ± 0.27	2.21	0.84
$D_S^+ \rightarrow K^+ \eta$	1.76 ± 0.36	1.00	0.70
$D_S^+ \to K^+ \eta'$	1.8 ± 0.5	1.92	-1.60

Factorization-Assisted Topological approach

Implications of LHCb2019 1903.08726

 $\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$ $= (-1.54 \pm 0.29) \times 10^{-3}$ 2. Precision of order 10-4 **1. Charm CPV** of order 10-3

Implication: What next potential to observe charm CPV?

1. Charm CPV of order 10⁻³ 2. Precision of order 10⁻⁴

1) Large branching fractions

$$Br(D^+ \to K^+ K^- \pi^+) = 9.5 \times 10^{-3}$$

Compared to $Br(D^0 \to \pi^+ \pi^-) = 1.4 \times 10^{-3}$

which dominates error of

 $\Delta A_{CP} = (-1.54 \pm 0.29) \times 10^{-3}$

Li, Lu, **FSY**, 1903.10638

What is the next potential mode to observe charm CPV?

$$Br(D^+ \to K^+ K^- \pi^+) = 9.5 \times 10^{-3}$$

$$A_{CP}(D^+ \to \pi^+ \phi) = 10^{-7}$$

Qin, Li, Lu, **FSY**, '14

$$A_{CP}(D^+ \to K^+ \overline{K}^{*0}) = 0.2 \times 10^{-3}$$
$$A_{CP}(D^+ \to K^+ \overline{K}^{*0}_0(1430)) = -0.88 \times 10^{-3}$$

Li, Lu, **FSY**, 1903.10638

2. CPV in Cabibbo-Favored (CF) and Doubly Cabibbo-Suppressed (DCS) modes

Precision —> 10-4 ?

2. CPV in $D \rightarrow f K_{s}$

 $V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 - \lambda^4/8 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) + A\lambda^5(\bar{\rho} - i\bar{\eta})/2 \\ -\lambda + A^2\lambda^5[1 - 2(\bar{\rho} + i\bar{\eta})]/2 & 1 - \lambda^2/2 - \lambda^4(1 + 4A^2)/8 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 + A\lambda^4[1 - 2(\bar{\rho} + i\bar{\eta})]/2 & 1 - A^2\lambda^4/2 \end{pmatrix}$

New Physics in $D \rightarrow f K_S^0$

Search for new physics at tree-level

Postulated in literature: deducting kaon mixing, data reveal direct CPV in charm

$$A_{CP}^{D^+ \to K_S^0 \pi^+} \equiv \frac{\Gamma(D^+ \to K_S^0 \pi^+) - \Gamma(D^- \to K_S^0 \pi^-)}{\Gamma(D^+ \to K_S^0 \pi^+) + \Gamma(D^- \to K_S^0 \pi^-)} \\ = A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^0}$$

Lipkin, Xing, '95; D'Ambrosio, Gao, '01; Bianco, Fabbri, Benson, Bigi, '03; Grossman, Nir, '12; Belle, '12

However... Full decay chain

 $D^+ \rightarrow \pi^+ K(t) (\rightarrow \pi^+ \pi^-)$

Indirect CPV in kaon mixing $Re(\epsilon)=10^{-3}$

t \overline{K}^0 K^0 π^+ $\pi^+\pi^ D^+$

Z.z. Xing, '95; Grossman, Nir, '12

Direct CPV in charm decays

 $Im(V_{cd}V_{us}/V_{cs}V_{ud}) = \lambda^6 = 10^{-5}$

Bigi, Yamamoto, '95

 $A_{CP}(t) = A_{CP}^{\overline{K}^0}(t) + A_{CP}^{\operatorname{dir}}(t) + A_{CP}^{\operatorname{int}}(t)$

CPV induced by mother decay and daughter mixing

Im(ϵ) Re(V_{cd}^{*}V_{us}/V_{cs}^{*}V_{ud})=10⁻⁴ ~ -3

D.Wang, FSY, H.n.Li, Phys.Rev.Lett 119, 181802(2017)

Time-dependent & Time integrated CPV

time of $K_{\mbox{\scriptsize S}}$ flying

Time-Integrated CPV

Belle: Evidence for CP Violation in the Decay $D^+ \to K_S^0 \pi^+$

PRL109,021601(2012) [arXiv:1203.6409]

$$A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}} \equiv \frac{\Gamma(D^{+} \to K_{S}^{0} \pi^{+}) - \Gamma(D^{-} \to K_{S}^{0} \pi^{-})}{\Gamma(D^{+} \to K_{S}^{0} \pi^{+}) + \Gamma(D^{-} \to K_{S}^{0} \pi^{-})}$$

$$= A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^{0}}, \qquad (1)$$

$$A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}} = (-0.363 \pm 0.094 \pm 0.067)\% \quad \text{Belle}$$

$$A_{CP}^{\bar{K}^{0}} = (-0.339 \pm 0.007)\%$$

$$A_{CP}^{\Delta C} = (-0.024 \pm 0.115)\%$$

$$\text{Belle}$$

Belle: Evidence for CP Violation in the Decay $D^+ \to K_S^0 \pi^+$

PRL109,021601(2012) [arXiv:1203.6409]

$$\begin{split} A_{CP}^{D^+ \to K_S^0 \pi^+} &\equiv \frac{\Gamma(D^+ \to K_S^0 \pi^+) - \Gamma(D^- \to K_S^0 \pi^-)}{\Gamma(D^+ \to K_S^0 \pi^+) + \Gamma(D^- \to K_S^0 \pi^-)} \\ &= A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^0} + A_{CP}^{int} \\ A_{CP}^{D^+ \to K_S^0 \pi^+} &= (-0.363 \pm 0.094 \pm 0.067)\% \quad \text{Belle} \\ &A_{CP}^{\bar{K}^0} = (-0.339 \pm 0.007)\% \\ A_{CP}^{\Delta C} &= (-0.024 \pm 0.115)\% \quad A^{\Delta C} = (-0.006 \pm 0.115)\% \\ \text{Belle} \qquad [Wang, FSY, Li, '17] \end{split}$$

$$\Delta A_{CP} = A_{CP}(D^+ \to \pi^+ K_S^0) - A_{CP}(D_s^+ \to K^+ K_S^0)$$

$$New Observable$$

$$revealing$$

$$new CPV effect$$

$$A_{CP}(t) \simeq \left[A_{CP}^{\mathbb{R}^0}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t)\right]$$

$$Cancel some systematic errors$$

$$(P LHCb \& Belle-II)$$

$$(Wang, FSY, Li, '17)$$

$$A_{CP}(D^+ \to \pi^+ K_S^0) - A_{CP}(D_s^+ \to K^+ K_S^0)$$

New CPV @ Ultimate Precision

LHCb:
$$\Delta a_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$
 @ 9 fb⁻¹

CF	mode	Yi	eld	SCS m	ode	Yield	
D ⁺ →	$K_S \pi^+$	4.8	×10 ⁶	$D^0 \rightarrow K$	(+ K -	7.7×10 ⁶	
D_s^+ –	• K _S K⁺	1.5:	×10 ⁶	$D^0 \rightarrow \pi$	+π-	2.5×10 ⁶	
	[1406	.2624]	LHCb	@ 3 fb ⁻¹	[16	02.03160]	

$$\mathcal{A}(D \to fK_S^0) = \mathcal{A}_{CF}^{\mathrm{SM}} + \mathcal{A}_{DCS}^{\mathrm{SM}}(1 + r^{\mathrm{NP}}e^{i\phi^{\mathrm{NP}}}e^{i\delta^{\mathrm{NP}}})$$

Left-Right Symmetric Model

 $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \to SU(2)_L \times U(1)_Y$

$$\begin{pmatrix} W_L^- \\ W_R^- \end{pmatrix} = \begin{pmatrix} \cos \zeta & -\sin \zeta e^{iw} \\ \sin \zeta e^{-iw} & \cos \zeta \end{pmatrix} \begin{pmatrix} W_1^- \\ W_2^- \end{pmatrix}$$

$$V_{CKM}^{R} = \begin{pmatrix} 0 & e^{i\phi_{0}} & 0 \\ \cos\theta e^{i\phi_{1}} & 0 & -\sin\theta e^{i(\phi_{1}-\phi_{3})} \\ \sin\theta e^{i\phi_{2}} & 0 & \cos\theta e^{i(\phi_{2}-\phi_{3})} \end{pmatrix} \underbrace{u}_{T}$$

Advantages — $A_{CP}(D \rightarrow K_{S}f)$

- Less ambiguities. Only tree diagrams, easily established in theory, extracted from Br's.
 Compared to SCS processes with penguins.
 FAT approach works well.
- 2. More clear to signal NP. NP may have large CP phase
- **3. Large branching fractions to measure.** CF processes.

Summary

- * CPV in D0->K+K- and pi+pi-
 - Understandable in the Standard Model
 - Next potential is D+ ->K+K-pi+
- * New CPV effect is found in CF $D \rightarrow K_S f$
 - mother decay and daughter mixing
 - To be subtracted to extract direct CPV
- Charm CPV is becoming more charming with precision at order of 10⁻⁴

Thank you for your attention!

Backups

Tree

Penguin

$$\left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{KK}|}\sin\delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{\pi\pi}|}\sin\delta^{\pi\pi}\right) \approx 1$$

$$\frac{|\mathcal{P}|}{|\mathcal{T}|}\sin\delta \sim 1/2 \quad \text{or Im}[\mathcal{P}/\mathcal{T}] \sim 1/2$$

FAT2012
$$\frac{\mathcal{P}^{\pi\pi}}{\mathcal{T}^{\pi\pi}} = 0.66e^{i134^{\circ}}, \text{ and } \frac{\mathcal{P}^{KK}}{\mathcal{T}^{KK}} = 0.45e^{i131^{\circ}}$$

$$\frac{P}{T} = \frac{a_4 + a_6 r_{\chi}}{a_1} = 0.36e^{-i108^{\circ}}$$
$$r_{\chi} = \frac{2m_0^2}{m_c} = 2.8, \text{ where } m_0^{\pi} = \frac{m_{\pi}^2}{(m_u + m_d)^2}$$

 $a_4 = -0.036 - i0.098, a_6 = -0.031 - i0.098$

$$C_{3,5}(\mu) \to C_{3,5} - \frac{\alpha_s(\mu)}{8\pi N_c} \sum_{q=d,s} \frac{\lambda_q}{\lambda_b} C^q(\mu, \langle l^2 \rangle) + \frac{1}{N_c} \frac{\alpha_s(\mu)}{4\pi} \frac{m_c^2}{\langle l^2 \rangle} [C_{8g}(\mu) + C_5(\mu)],$$

$$C_{4,6}(\mu) \to C_{4,6} + \frac{\alpha_s(\mu)}{8\pi} \sum_{q=d,s} \frac{\lambda_q}{\lambda_b} C^q(\mu, \langle l^2 \rangle) - \frac{\alpha_s(\mu)}{4\pi} \frac{m_c^2}{\langle l^2 \rangle} [C_{8g}(\mu) + C_5(\mu)],$$

$$D \to f K_S^0(\to \pi^+ \pi^-)$$
$$A_{CP}(t) \equiv \frac{\Gamma_{\pi\pi}(t) - \overline{\Gamma}_{\pi\pi}(t)}{\Gamma_{\pi\pi}(t) + \overline{\Gamma}_{\pi\pi}(t)}$$

Tree amplitudes !!!

Can be extracted from data of branching fractions

 $A_{CP}(t) = A_{CP}^{\overline{K}^0}(t) + A_{CP}^{\text{dir}}(t) + A_{CP}^{\text{int}}(t)$

$$\begin{split} A_{CP}^{\overline{K}^{0}}(t) &= 2e^{-\Gamma_{S}t}\mathcal{R}e(\epsilon) - 2e^{-\Gamma t}\Big[\mathcal{R}e(\epsilon)\cos(\Delta m t) \\ &+ \mathcal{I}m(\epsilon)\sin(\Delta m t)\Big], \\ A_{CP}^{\mathrm{dir}}(t) &= e^{-\Gamma_{S}t}\,2r_{f}\sin\delta_{f}\!\sin\phi \end{split}$$

$$\begin{array}{c}
\overline{K}^{0} \\
\pi^{+} \\
D^{+} \\
\overline{\pi}^{+} \\
\overline{K}^{0} \\
t
\end{array}$$

$$A_{CP}^{\text{int}}(t) = -4r_f \cos \phi \sin \delta_f \left[e^{-\Gamma \mathcal{E} t} \mathcal{I}m(\epsilon) - e^{-\Gamma t} \left(\mathcal{I}m(\epsilon) \cos(\Delta m t) - \mathcal{R}e(\epsilon) \sin(\Delta m t) \right) \right]$$
 Mot

Mother decay, daughter mixing

$$\phi \equiv Arg \left[-V_{cd}^* V_{us} / V_{cs}^* V_{ud} \right] = (-6.2 \pm 0.4) \times 10^{-4}$$

Sensitive to New Physics CP phase

Searching Strategies

1. Binned $D^+ \rightarrow K^+ K^- \pi^+$

	Branching Fractions	CP Violation	
$D^+ o \pi^+ \phi$	2.6×10^{-3}	10 ⁻⁷ Benc	hmark
$D^+ \to K^+ \overline{K}^{*0}$	2.4×10^{-3}	0.2×10^{-3}	
$D^+ \to K^+ \overline{K}_0^{*0}(1430)$	1.8×10^{-3}	-0.9×10^{-3}	

Li, Lu, **FSY**, 1903.10638

Searching Strategies

2. Phase Space Integrated Li, Lu, FSY, 1903.10638

(1)
$$A_{CP}(D^+ \to K^+ K^- \pi^+) - A_{CP}(D^+ \to \pi^+ \pi^- \pi^+)$$

= $A_{CP}^{\text{raw}}(D^+ \to K^+ K^- \pi^+) - A_{CP}^{\text{raw}}(D^+ \to \pi^+ \pi^- \pi^+)$
Br=0.95% Br=0.3%

(2)
$$A_{CP}(D^+ \to K^+ K^- \pi^+) - A_{CP}(D_s^+ \to K^+ \pi^+ \pi^-)$$

 $= \begin{bmatrix} A_{CP}^{\text{raw}}(D^+ \to K^+ K^- \pi^+) - A_{CP}^{\text{raw}}(D^+ \to K^- \pi^+ \pi^+) \end{bmatrix}$ Br=0.95% $- \begin{bmatrix} A_{CP}^{\text{raw}}(D_s^+ \to K^+ \pi^+ \pi^-) - A_{CP}^{\text{raw}}(D_s^+ \to K^+ K^- \pi^+) \end{bmatrix}$ Br=0.66% 53