BESIII漂移室径迹重建

伍灵慧 wulh@ihep.ac.cn BESIII MDC 软件组 2018-9-28

- 径迹重建目的
- 常用寻迹方法
- BESIII实验中的径迹重建
 - 径迹寻找
 - 径迹拟合
 - -寻迹效率
- 总结

Interaction of particles in diff. detector components:

带电粒子径迹探测

• 顶点测量

• 动量测量

• 径迹外推与匹配

顶点测量

不变质量

径迹外推和匹配

 $e+e- \rightarrow e+e-$

е+е- → үү

径迹寻找(Track Finding)
 –寻找可能的入射粒子径迹以及属于该径迹的击中

径迹拟合(Track Fit)
通过拟合确定径迹参数及误差矩阵

Connecting The Dots -- a workshop on tracking

CONNECTING THE DOTS 2018 4TH INTERNATIONAL WORKSHOP

20-22 MARCH 2018 University of Washington, Seattle, USA

Connecting The Dots 2018

20-22 March 2018	Search	Q
University of Washington Seattle		

US/Pacific timezone

Overview

Scientific Programme

Timetable

Seattle tracking hackathon

L TrackML hackathon registration

Registration

Participant List

Contribution List

This is a workshop on track reconstruction and other problems in pattern recognition in sparsely sampled data. The workshop is intended to be inclusive across other disciplines wherever similar problems arise. The main focus will be on pattern recognition and machine learning problems that arise e.g. in the reconstruction of particle tracks or jets in high energy physics experiments.

This 2018 edition is the 4th of the Connecting The Dot series (see CTD2015 Berkeley, CTD2016 Vienna, WIT/CTD2017 LAL-Orsay).

The workshop is plenary sessions only, with a mix of invited talks and accepted contributions. There will also be a Poster session.

Wifi is available on site, eduroam credentials, from your institution or CERN, are recommended (but not mandatory)

• 径迹跟踪:

候选种子击中 → 预测 → 加入新的测量点

问题:随着测量点的增加,组合数急剧上升,计算时间急剧增长

寻迹方法-模版匹配

• 构造模版字典, 通过查字典的方式找出径迹段

寻迹方法-数学变换

• 共形变换(Conformal mapping)

• 勒让德变换(Legendre transform)

• 霍夫变换(Hough transform)

共形变换

• 通过共形变换,圆径迹变换为直线

圆方程: $(x-x_c)^2 + (y-y_c)^2 = r^2 \longrightarrow X = 2x/(x^2+y^2), Y = 2y/(x^2+y^2)$

勒让德变换

NIM A 745(2014) 16-23

Real space

Legendre transformation space

- A circle can be estimated by every three datapoints
- Each circle is transformed to the Legendre space
- The maxima in Legendre space are used for extraction of the original circle parameters

- R->0的Legendre变换
- Transform a point in real space to a line or a curve in parameter space
- Points rest on a line in real space ←→lines or curves in Hough space

Example: circular Hough transform in Comet experiment

Figure 1: Points in (x, y) space, blue, thought to be on a circle, red, whose centre lies at the origin, orange.

Figure 2: A mapping from the points in (x, y) space, blue, to possible circle centers in (a, b) space, green.

寻迹方法 -- 机器学习

机器学习在重建中的应用

• 排除噪声 - BESIII上正在研究

CGEM探测器中的Cluster重建
 – Liu Beijiang' talk in CHEP2018

结合Hough变换进行寻迹
 如Comet实验中研究的GBDT方法

径迹拟合

• 全局最小二乘拟合

- 将径迹视为标准螺旋线, 快速地得到径迹参数

- 分段拟合
 - 便于考虑多次散射、磁场不均匀、能量损失等 效应,如Kalman filter方法

BESIII实验中的径迹重建

- 采用漂移室进行带电粒子的径迹探测
- 设计要求
 - 具有尽可能大的立体角覆盖,并为加速器超到插入铁 提供空间
 - 高的径迹探测和重建效率
 - 好的动量分辨(0.5%@1GeV/c)
 - 好的dE/dx分辨(6~7%)
 - 能在1T磁场下正常工作
 - 能在高计数率条件下正常工作,并能有较长的寿命

BESIII漂移室总体结构

- 2.6m long cylindrical chamber
- It consists of an inner chamber and an outer chamber
- With an inner radius of 59mm and an outer radius of 810mm
- Filled with $He/C_3H_8(60/40)$

- Sense wires:
 - $-\phi 25\mu m$ gold-plated tungsten
 - at a potential of 2100V for the inner chamber and 2200V for the outer chamber
- Field wires:
 - $\phi 110 \mu m$ gold-plated aluminum
 - at ground

单元结构

- Square cell
- 6796 sense wires and 21884 field wires.
- The average half-cell size is 6mm for the inner chamber and 8.1mm for the outer chamber
- Half cell staggering to resolve the left-right ambiguity

丝层设置

• 43 sense layers

The inner most 8 layers are located in the inner chamber and the other 35 layer are in the outer chamber.

Layer	Number of cells per layer	type	Stereo angle (degree)
1 - 4	40/44/48/56	stereo (-)	2.9 ~ 3.3
5 - 8	64/72/80/80	stereo (+)	3.4 ~ 3.9
9 - 20	76/88/100/112/128/140	axial	—
21 - 24	160	stereo (-)	2.4 ~ 2.7
25 — 28	176	stereo (+)	2.7 ~ 3.1
29 - 32	208	stereo (-)	3.0 ~ 3.3
33 - 36	240	stereo (+)	3.3 ~ 3.6
37 - 40	256	axial	_
41 - 43	288	axial	_

入射带电粒子在均匀磁场B下, 其飞行轨迹为螺旋线

在x-y(或r-φ)平面上测量粒子的横 动量(P_T) R: m

$$R = \frac{P_T}{0.3qB}$$

R: m P_T: GeV/c B: T q: 粒子电荷,以电子的 电荷为单位

在s-z平面上测量dip angle (λ) s为粒子飞行长度 P = P_T/cosλ

位置测量

直丝 (axial wire): x-y平面的测量

斜丝 (stereo wire): x-y平面及z向测量 丝与z轴的夹角称为倾斜角(ɛ)

如果σx=120μm, ε=50mrad → σz=2.4mm

- dr
 - Signed distance in x-y plane from the pivot to the helix
- - Azimuth angle of the Poca (point of closest approach in the x-y plane)
- K
 - -q/Pt
- dz
 - z position of the Poca
- $tan\lambda$
 - Tangent of the dip angle

- 径迹寻找
 - PAT algorithm: based on template matching
 - TSF algorithm: conformal transformation
 - CurlFinder algorithm: low momentum tracking
 - Hough transform: a complementary tracking algorithm
- 径迹拟合
 - Global least-squares fit
 - Track fit with Kalman filter

PAT algorithm

Segment Finding Method

- Tracking in the MDC is based on *segments*
- Search for *patterns* in the super layer

4-hit patterns

Combination of segments

Link axial segments

$$\phi_0 = \bar{\phi} - \arcsin(\kappa r_{sl})$$

$$\kappa = \frac{\bar{\kappa}}{\sqrt{1 + (r_{sl}\bar{\kappa})^2}}$$

• Link stereo segments

$$cot\theta = (\kappa_{ax} - \kappa_{seg})(-\sqrt{1 - \kappa^2 R^2})(\frac{2L_w}{\alpha})$$
$$= (\frac{\kappa_{sl}}{\sqrt{1 - \kappa_{sl}^2 r_{sl}^2}} - \kappa_{seg})(-\sqrt{1 - \kappa^2 r_s l^2})(\frac{2L_w}{\alpha})$$
$$z_0 = z - \cot\theta l$$

TSF algorithm

Conformal transform

• A hit position (x, y) in x-y plane is transformed into a position (X, Y) in the conformal plane.

 $X = 2x/(x^2+y^2), Y = 2y/(x^2+y^2)$

A circle which passes through the origin (0, 0) is transformed into a line.
 x_cX + y_cY = 1

 (x_c, y_c) is the center of the circle

Track segment finding

• If the hit belongs to the track, its drift circle in the conformal plane is tangent to the line of the track

a) Patterns

segment

b) Four-layer pattern in the

c) Four candidates of track

d) The best candidate after

matching the middle layers

conformal plane

- Left-right ambiguity is kept after conformal transform
- Require that at least 3 layer are fired in each super layer

CurlFinder algorithm

 An algorithm for low momentum track finding

Super layer	Stereo/ axial	Radius (cm)	p _T (MeV/c)
1	stereo	11.5	17
2	stereo	16.2	24
3	axial	24.6	37
4	axial	31.0	47
5	axial	37.5	56
6	stereo	44.8	67
7	stereo	51.4	77
8	stereo	57.9	87
9	stereo	64.2	96
10	axial	71.6	107
11	axial	77.1	116
Outer tube		81.0	122

Flow diagram

Axial segment finding

More than one hit in the same layer

Find consecutive hits in each axial super layer

Fired cell → find neighbor → find neighbor's neighbor ...

Definition of neighbor

3-D track finding

• Find stereo hits near the circle

charged track

- Line fit in s-z plane
- Helix fitting

Hough transform

全局的最小二乘拟合

 Least squares fitting without consideration of NUMF, multiple scattering, energy loss

$$\chi^{2} = \sum_{i=1}^{N_{hit}} \frac{(d_{meas}^{(i)} - d_{track}^{(i)})^{2}}{\sigma_{i}^{2}}$$

- d_{meas} is the measured drift distance
- d_{track} i.e. doca, distance of closest approach

基于Kalman滤波的径迹拟合

- Track parameters obtained by in iterations:
 ...→prediction→filter with a hit→update→...
- Considered effects: nonuniform magnetic field, energy loss and multiple scattering
- 5 hypothesis: e, μ, π, K, p
- Inwards filter: provide track parameters at IP
- Outwards filter: provide track parameters seed for extrapolation (expected TOF, reconstruction with TOF/EMC/MUC)

两种径迹拟合的对比

全局拟合结果

Kalman滤波拟合结果

BESIII Drift Chamber Tracking

Runge-Kutta

fitting

MdcPatRec

 limited by segment pattern coverage, rec. for high pt tracks (P_T > 250MeV/c)

MdcTsfRec

- P_T : 120~250MeV/c
- CurlFinder
 - P_T <120MeV
- Hough transform

Kalman fitting

Tracking efficiency with P_T J/psi \rightarrow pp $\pi\pi$, without Hough transformprotonanti-proton

Tracking efficiency with P_T J/psi \rightarrow pp $\pi\pi$, without Hough transform π^+ π^-

Tracking efficiency after Hough tracking

Ds Signal Yields slightly improved after using HOUGH tracking

By H.L. Ma and S.F. Zhang

From 2.386 data, number of signal increased ~5% after using HOUGH

Monte-Carlo Λ_c from 4.6GeV

	Efficiency(%)	relative eff. increase after HOUGH
$\Lambda_{c}^{+} \rightarrow \Sigma^{+} \omega \text{ (mBC 2.282~2.292)}$	9.491	2.89
$\Lambda_c^+ \rightarrow \Sigma^+ \Phi \text{ (mBC 2.275~)}$	2.571	1.98
$\Lambda_{c}^{+} \rightarrow p^{+} \Phi \pi^{0} (mBC \ 2.275)$	6.213	3.30
$\Lambda_{c}^{+} \rightarrow p^{+}K^{-}e^{+}\nu_{e}$ (mBC 2.275)	24.808	2.5

总结

- 带电粒子径迹重建是高能物理实验数据处理的重要环节
- 寻迹方法
 - 模版匹配、数学变换、机器学习
- BESIII实验中的径迹重建
 - 径迹寻找: 多种方法相结合
 - 径迹拟合: Kalman滤波方法

Backup

Tracking efficiency with $cos\theta$ J/psi \rightarrow ppππ, without Hough transform proton anti-proton

Tracking efficiency with $cos\theta$ J/psi $\rightarrow pp\pi\pi$, without Hough transform

π-

 π +

1.0 **Fracking Efficiency** 0.9 Tracking Efficiency 0.9 08 08 Q, 03 L MC P Data MC • Data 0.60.6 1.051.05Uncertainty Uncertainty 1.001.000.95 0.95 cos0 $\cos\theta$

GENFIT

a generic toolkit for track reconstruction for experiments in particle and nuclear physics

GENFIT is an experiment-independent framework for track reconstruction for particle and nuclear physics. It consists of three modular components:

Track fitting algorithms

Currently, GENFIT contains a Kalman Filter and a Deterministic Annealing Filter. Other algorithm modules can be added easily.

Track representations

These modules hold the data of track track parameters and can perform extrapolations of these parameters. GENFIT is distributed with two well-tested track representations.

Existing track extrapolation codes can be interfaced in a very straightforward way in this framework, using their native geometry and magnetic field interfaces.

Reconstruction hits

The hit dimensionality and the orientation of planar tracking detectors can be chosen freely. GENFIT is especially useful for tracking systems which include detectors which do not measure the passage of particles on predefined planes, like TPCs or wire-based drift chambers. The concept of so-called virtual detector planes provides a simple mechanism to use these detector hits in a transparent way without any geometrical simplifications.

GENFIT has been developed in the framework of the PANDA experiment at FAIR, Darmstadt, Germany. It is also used in the Belle-2, Fopi, and GEM-TPC experiments.

GENFIT is implemented in C++ and makes extensive use of object-oriented design. It is available <u>here at sourceforge</u> under the LGPL v3. There is a mailing list, which you can register for at <u>https://lists.sourceforge.net/lists/listinfo/genfit-forum</u>. A paper on GENFIT has been <u>published in NIM A</u> (preprint). Recent developments are described in another <u>preprint</u>.

http://genfit.sourceforge.net/Main.html

