

How to distinguish two mass-degenerate 125 GeV Higgs boson(s) from one?

Ning Chen (陈宁), Nankai Univ.

based on arXiv: 1712.01299

May 3rd, 2018 @ USTC

Outline

- Can we have more than one (or two) resonances at 125 GeV (degenerate Higgs)? <u>Yes, it is possible</u>.
- How to distinguish the degenerate Higgs scenario from the conventional single Higgs scenario?
 - precise signal fit cannot offer an answer
 - to look for the BSM effects: self-interactions or pair productions at LHC/ILC, the searches for CP-odd scalars.

The 2HDM

$$\mathcal{L} = \sum_{i=1,2} |D\Phi_i|^2 - V(\Phi_1, \Phi_2)$$

$$V(\Phi_1, \Phi_2) = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + H.c.) + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4$$

$$+ \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \Big[\lambda_5 (\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + H.c. \Big]$$

with m_{12}^2 and λ_5 being complex.

$$\Phi_1 = \begin{pmatrix} -\mathbf{s}_\beta H^+ \\ \frac{1}{\sqrt{2}}(\mathbf{v}_1 + H_1^0 - i\mathbf{s}_\beta A) \end{pmatrix}, \qquad \Phi_2 = \begin{pmatrix} \mathbf{c}_\beta H^+ \\ \frac{1}{\sqrt{2}}(\mathbf{v}_2 \mathbf{e}^{i\xi} + H_2^0 + i\mathbf{c}_\beta A), \end{pmatrix}$$

Neutral Higgs masses

Masses and mixings of the CP-even Higgs boson:

$$\mathcal{M}_{0}^{2} = \begin{pmatrix} m_{12}^{2}t_{\beta} + \lambda_{1}v_{1}^{2} & -m_{12}^{2} + \lambda_{345}v_{1}v_{2} \\ -m_{12}^{2} + \lambda_{345}v_{1}v_{2} & m_{12}^{2}/t_{\beta} + \lambda_{2}v_{2}^{2} \end{pmatrix},$$

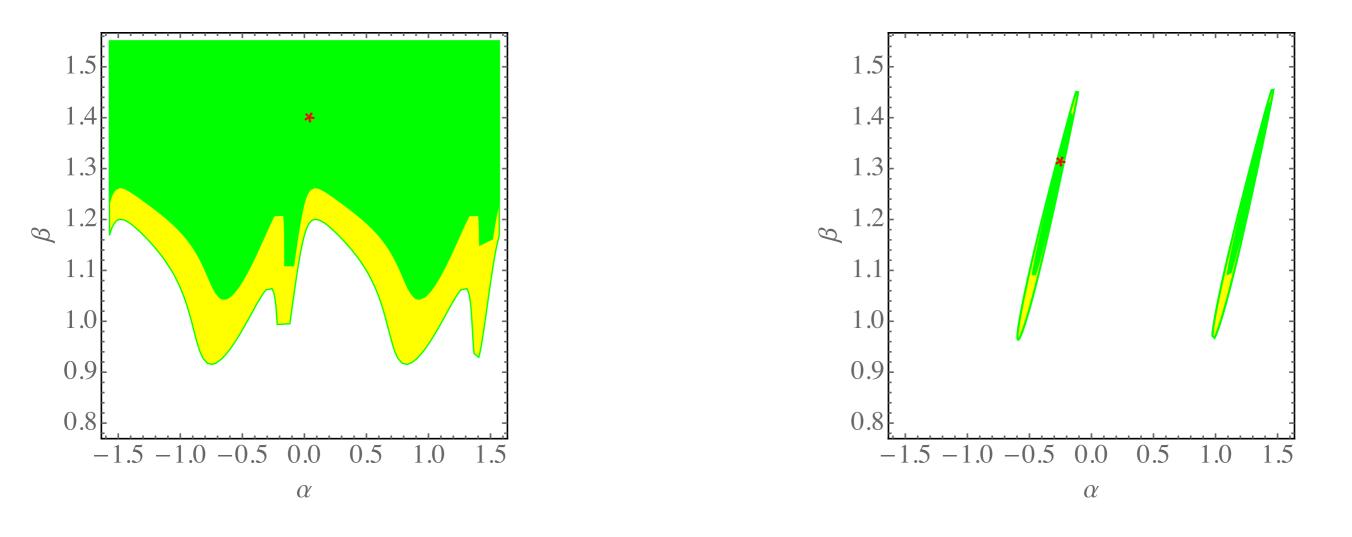
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \cdot \begin{pmatrix} h_{1} \\ h_{2} \end{pmatrix}$$

Neutral Higgs couplings

$$egin{aligned} \mathcal{L} &\supset \sum_{h_i=h\,,H} \Big[-rac{m_f}{v} \xi^f_i ar{f} f + a_i \left(2rac{m_W^2}{v} W^+_\mu W^{-\,\mu} + rac{m_Z^2}{v} Z_\mu Z^\mu
ight) \Big] h_i \ &- rac{m_f}{v} \xi^f_A ar{f} i \gamma_5 f A\,, \end{aligned}$$

$$\begin{split} \text{Type-I} &: \xi_h^f = s_{\beta-\alpha} + \frac{c_{\beta-\alpha}}{t_\beta}, \qquad \xi_H^f = c_{\beta-\alpha} - \frac{s_{\beta-\alpha}}{t_\beta} \\ & \xi_A^u = \frac{1}{t_\beta}, \qquad \xi_A^{d,\ell} = -\frac{1}{t_\beta}, \\ \text{Type-II} &: \xi_h^u = s_{\beta-\alpha} + \frac{c_{\beta-\alpha}}{t_\beta}, \qquad \xi_h^{d,\ell} = s_{\beta-\alpha} - c_{\beta-\alpha}t_\beta, \\ & \xi_H^u = c_{\beta-\alpha} - \frac{s_{\beta-\alpha}}{t_\beta}, \qquad \xi_H^{d,\ell} = c_{\beta-\alpha} + s_{\beta-\alpha}t_\beta, \\ & \xi_A^u = \frac{1}{t_\beta}, \qquad \xi_A^{d,\ell} = t_\beta, \\ & a_h = s_{\beta-\alpha}, \qquad a_H = c_{\beta-\alpha}. \end{split}$$

Global signal fit to the degenerate Higgs


The Higgs signals @LHC run-l

Decays	Productions	ATLAS	Ref	CMS	Ref
$\gamma\gamma$	ggF	1.32 ± 0.38	[31]	$1.12^{+0.37}_{-0.32}$	[32]
$\gamma\gamma$	VBF	0.8 ± 0.7	[31]	$1.58\substack{+0.77\\-0.68}$	[32]
$\gamma\gamma$	WH	1.0 ± 1.6	[31]	-	-
$\gamma\gamma$	ZH	$0.1\substack{+3.7 \\ -0.1}$	[31]	-	-
$\gamma\gamma$	VH	-	-	$-0.16\substack{+1.16 \\ -0.79}$	[32]
$\gamma\gamma$	ttH	$1.6\substack{+2.7 \\ -1.8}$	[31]	$2.69\substack{+2.51\\-1.81}$	[32]
ZZ	ggF,ttH,bbH	$1.7\substack{+0.5\\-0.4}$	[33]	-	-
ZZ	ggF,ttH	-	-	$0.80\substack{+0.46\\-0.36}$	[34]
ZZ	VBF,VH	$0.3\substack{+1.6 \\ -0.9}$	[33]	$1.7^{+2.2}_{-2.1}$	[34]
W^+W^-	ggF	$1.02\substack{+0.29 \\ -0.26}$	[35]	$0.74\substack{+0.22 \\ -0.20}$	[36]
W^+W^-	VBF	$1.27\substack{+0.53 \\ -0.45}$	[35]	$0.60\substack{+0.57 \\ -0.46}$	[36]
W^+W^-	VH	-	-	$0.39\substack{+1.97 \\ -1.87}$	[36]
$b\bar{b}$	ttH	1.5 ± 1.1	[37]	$1.2^{+1.6}_{-1.5}$	[38]
$b\overline{b}$	VH	$0.51\substack{+0.40 \\ -0.37}$	[39]	1.0 ± 0.5	[40]
$\tau^+\tau^-$	ggF	$2.0^{+1.5}_{-1.2}$	[41]	1.07 ± 0.46	[42]
$\tau^+\tau^-$	VBF,VH	$1.24\substack{+0.59\\-0.54}$	[41]	-	-
$\tau^+\tau^-$	VBF	-	-	0.94 ± 0.41	[42]
$\tau^+ \tau^-$	VH	-	-	-0.33 ± 1.02	[42]

The Higgs signals @LHC run-II

Decays	Productions	ATLAS	Ref	CMS	Ref
$\gamma\gamma$	ggF	$0.80\substack{+0.19 \\ -0.18}$	[43, 44]	$1.11\substack{+0.19\\-0.18}$	[45]
$\gamma\gamma$	VBF	2.1 ± 0.6	[43, 44]	$0.5\substack{+0.6\\-0.5}$	[45]
$\gamma\gamma$	VH	$0.7\substack{+0.9\\-0.8}$	[43, 44]	$2.3^{+1.1}_{-1.0}$	[45]
$\gamma\gamma$	ttH	0.5 ± 0.6	[43, 44]	$2.2\substack{+0.9\\-0.8}$	[45]
ZZ	ggF	$1.11\substack{+0.25\\-0.22}$	[44, 46]	$1.20\substack{+0.22\\-0.21}$	[47]
ZZ	VBF	$4.0\substack{+1.8\\-1.5}$	[44, 46]	$0.05\substack{+1.03 \\ -0.05}$	[47]
ZZ	VH	0 ± 1.9	[44, 46]	$0\pm2.83,\mathrm{or}0\pm2.66$	[47]
ZZ	ttH	0 ± 3.9	[44, 46]	0 ± 1.19	[47]
W^+W^-	ggF	-	-	1.02 ± 0.27	[48]
W^+W^-	VBF	$1.7\substack{+1.2 \\ -0.9}$	[49]	-	-
W^+W^-	WH	$3.2\substack{+4.4\\-4.2}$	[49]	-	-
W^+W^-	VBF+VH	-	-	0.89 ± 0.67	[48]
bb	VH	$1.20\substack{+0.42\\-0.36}$	[50]	-	-
$ au^+ au^-$	ggF	-	-	0.84 ± 0.89	[51]
$\tau^+\tau^-$	VBF	-	-	$1.11\substack{+0.34\\-0.35}$	[51]
$ au^+ au^-$	ttH	-	-	$0.72\substack{+0.62\\-0.53}$	[52]

Global signal fit

$$\chi^2 = \sum_{ ext{PD}} \Big(rac{\mu_{ ext{th}}^{ ext{PD}} - \mu_{ ext{exp}}^{ ext{PD}}}{\sigma_{ ext{exp}}^{ ext{PD}}} \Big)^2 \,,$$

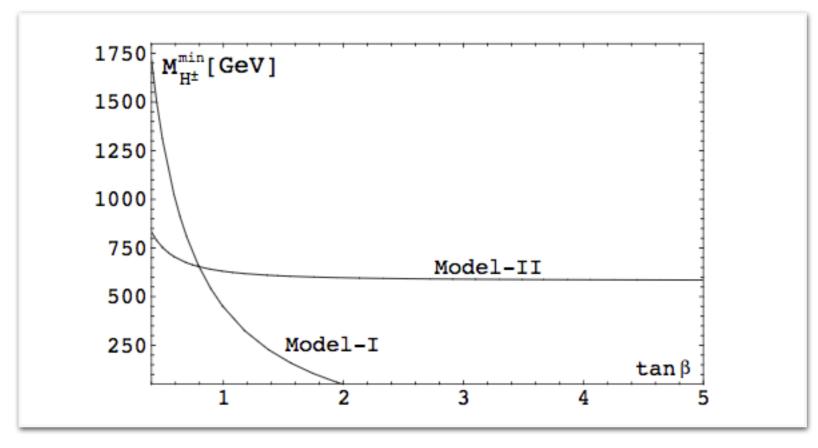
$$\mu[XX \to h/H \to YY] = \frac{|\kappa_{hXX}\kappa_{hYY}|^2}{\Gamma_h/\Gamma_h^{\rm SM}} + \frac{|\kappa_{HXX}\kappa_{HYY}|^2}{\Gamma_H/\Gamma_h^{\rm SM}} \,.$$

$$\Delta M \equiv M_H - M_h \gg \Gamma_H + \Gamma_h$$

Best-fit points

$M_h \approx M_H$	Type-I	Type-II
$(c_{\beta-lpha}, t_{\beta}, \Gamma_{tot})$	(0.21, 5.8, 4.2 MeV)	(0.01, 3.8, 41.4 MeV)
(Γ_h, Γ_H)	(4.11 MeV, 0.05 MeV)	(3.89 MeV, 37.49 MeV)
$(\operatorname{Br}[h \to b\bar{b}], \operatorname{Br}[H \to b\bar{b}])$	(58.80%, 8.68%)	(56.23%, 89.85%)
$(\operatorname{Br}[h \to \tau^+ \tau^-], \operatorname{Br}[H \to \tau^+ \tau^-])$	(6.44 % , 0.95 %)	(6.16 %, 9.84 %)
$(\operatorname{Br}[h \to W^+ W^-], \operatorname{Br}[H \to W^+ W^-])$	(20.35 % , 77.86 %)	(22.50 % , -)
$(\operatorname{Br}[h \to ZZ], \operatorname{Br}[H \to ZZ])$	(2.50 % , 9.56 %)	(2.76%,-)
$(\operatorname{Br}[h \to \gamma \gamma], \operatorname{Br}[H \to \gamma \gamma])$	(0.21 % , 1.22 %)	(0.24 % , -)
$(\operatorname{Br}[h \to gg], \operatorname{Br}[H \to gg])$	(8.73%, 1.29%)	(9.04 % , 0.28 %)

Table: The best-fit points of (α, β) for the mass-degenerate Higgs bosons of $M_h \approx M_H = 125$ GeV in both Type-I and Type-II 2HDM. The decay widths of (Γ_h, Γ_H) , and decay branching ratios are listed, where the decay branching ratios smaller than 10^{-4} are neglected.


The constraints to the 2HDM with degenerate Higgs

A set of constraints

- The charged Higgs boson mass bounds: from FCNC decays
- The unitarity && stability constraints to the 2HDM potential
- The EW precision tests: can be easily alleviated
- LHC direct searches for CP-odd scalar A

The charged Higgs boson

The Belle measurements of b> s+gamma decay: 1608.02344

Misiak && Steinhauser, 1702.04571

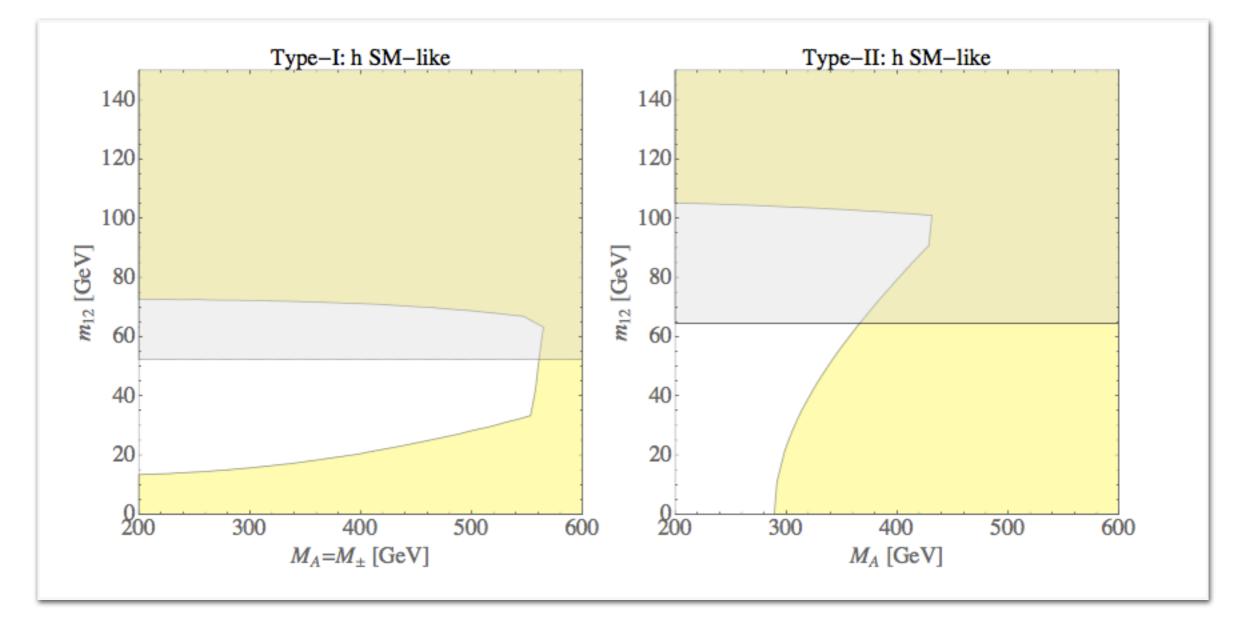
No constraints to M_{\pm} in Type-I, while $M_{\pm} \ge 590$ GeV in Type-II.

The unitarity && stability

The perturbative unitarity constraints require the following quantities:

$$\begin{split} a_{\pm} &= \frac{3}{2} (\lambda_1 + \lambda_2) \pm \frac{1}{2} \sqrt{9(\lambda_1 - \lambda_2)^2 + (2\lambda_3 + \lambda_4)^2} \,, \\ b_{\pm} &= \frac{1}{2} \Big[(\lambda_1 + \lambda_2) \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2} \Big] \,, \\ c_{\pm} &= \frac{1}{2} \Big[(\lambda_1 + \lambda_2) \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_5^2} \Big] \,, \\ f_{+} &= \lambda_3 + 2\lambda_4 + 3\lambda_5 \,, \qquad f_{-} &= \lambda_3 + \lambda_5 \,, \qquad f_{1} = f_2 = \lambda_3 + \lambda_4 \,, \\ e_{1} &= \lambda_3 + 2\lambda_4 - 3\lambda_4 \,, \qquad e_{2} = 2\lambda_3 - \lambda_5 \,, \qquad p_{1} = \lambda_3 - \lambda_4 \,, \end{split}$$

to be $\leq 8\pi$.

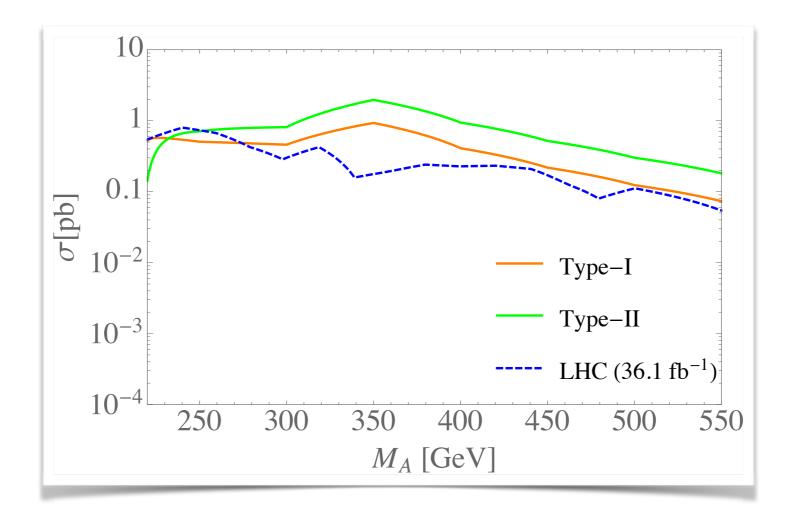

• The stability constraints: $\lambda_{1,2} \ge 0$, $\lambda_3 \ge -\sqrt{\lambda_1 \lambda_2}$, and $\lambda_3 + \lambda_4 - |\lambda_5| \ge -\sqrt{\lambda_1 \lambda_2}$.

The unitarity && stability

• The quartic Higgs self couplings can be traded into physical inputs as:

$$\begin{split} \lambda_{1} &= \frac{M_{h}^{2}s_{\alpha}^{2} + M_{H}^{2}c_{\alpha}^{2} - m_{12}^{2}t_{\beta}}{v^{2}c_{\beta}^{2}}, \\ \lambda_{2} &= \frac{M_{h}^{2}c_{\alpha}^{2} + M_{H}^{2}s_{\alpha}^{2} - m_{12}^{2}/t_{\beta}}{v^{2}s_{\beta}^{2}}, \\ \lambda_{3} &= \frac{1}{v^{2}}\Big[\frac{(M_{H}^{2} - M_{h}^{2})s_{\alpha}c_{\alpha}}{s_{\beta}c_{\beta}} + 2M_{\pm}^{2} - \frac{m_{12}^{2}}{s_{\beta}c_{\beta}}\Big], \\ \lambda_{4} &= \frac{1}{v^{2}}(M_{A}^{2} - 2M_{\pm}^{2} + \frac{m_{12}^{2}}{s_{\beta}c_{\beta}}), \\ \lambda_{5} &= \frac{1}{v^{2}}(\frac{m_{12}^{2}}{s_{\beta}c_{\beta}} - M_{A}^{2}). \end{split}$$

The unitarity && stability

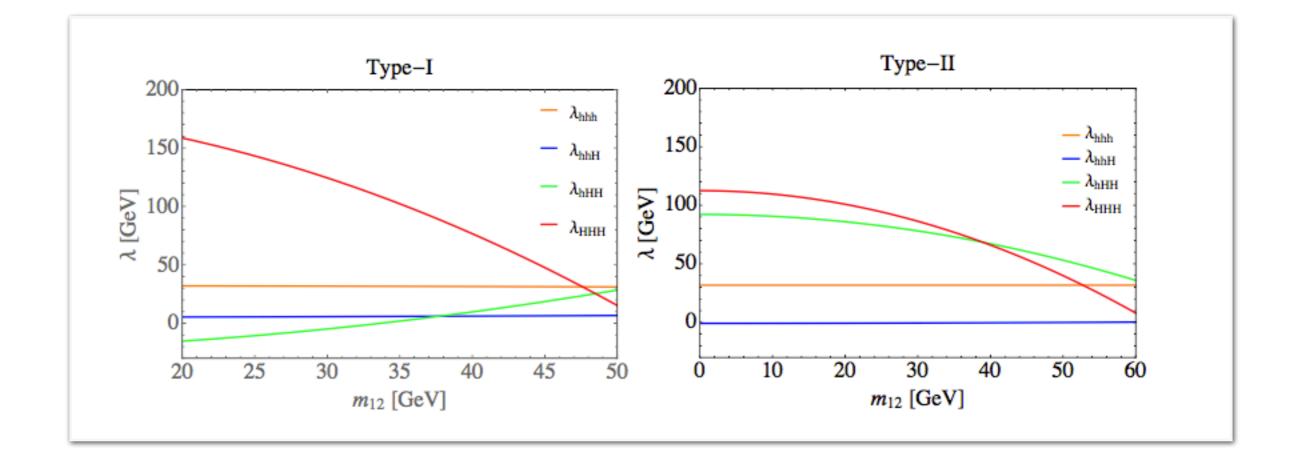

Type-I : $20 \leq m_{12} \leq 50 \text{ GeV}$, with $M_A = M_{\pm} \in (200, 280) \text{ GeV}$,

Type-II : $0 \le m_{12} \le 60 \text{ GeV}$, with $M_A \in (200, 250)$ GeV and $M_{\pm} = 600 \text{ GeV}$. Experimental tests of the degenerate Higgs

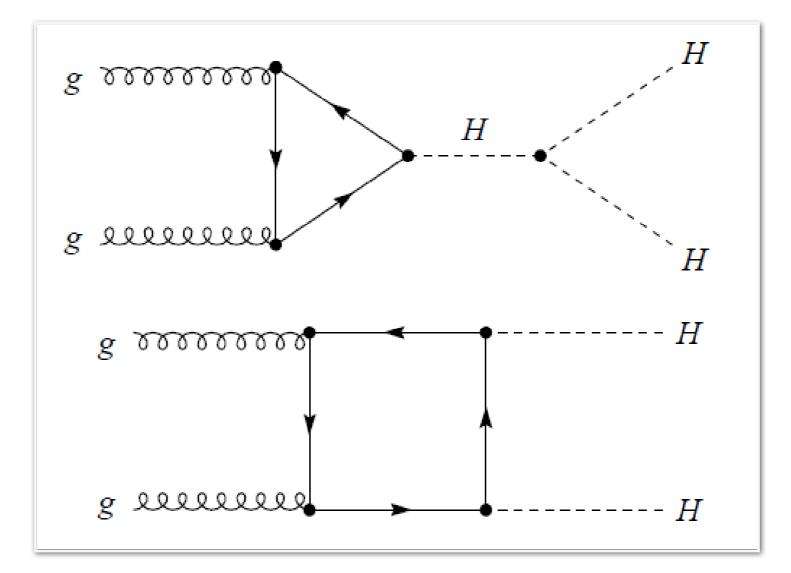
Indirect tests at LHC

- In the single M_h ≈ 125 GeV 2HDM, the decay branching fraction of A → h + Z is suppressed by the alignment factor of c_{β-α} ~ O(0.1) O(0.01).
- In the h/H mass-degenerate case, one has decay modes of A → h/H + Z. The signal rates with the bb
 + ℓ⁺ℓ⁻ final states are obtained as

$$\sigma_{\text{tot}} = \sigma[pp \to AX] \times \left(\text{BR}[A \to hZ] \times \text{BR}[h \to b\bar{b}] + \text{BR}[A \to HZ] \times \text{BR}[H \to b\bar{b}]\right) \times \text{BR}[Z \to \ell^+ \ell^-].$$



Direct tests: Higgs self-couplings && Higgs pairs

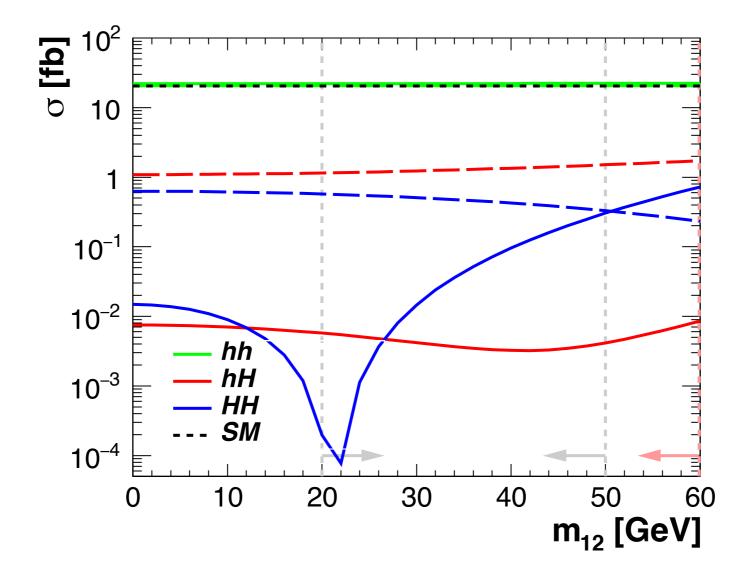

- The Higgs self-couplings can be measured through the Higgs pair productions at both LHC and future electron-positron colliders.
- There are more than one triple Higgs self-couplings involved for degenerate Higgs:

$$\begin{split} \lambda_{hhh} &= -\frac{1}{32v s_{\beta}^2 c_{\beta}^2} \Big[M_h^2 (3s_{\alpha-\beta} + s_{3(\alpha-\beta)} - s_{3\alpha+\beta} - 3s_{\alpha+3\beta}) \\ &\quad + 4m_{12}^2 (c_{3\alpha-\beta} + c_{\alpha-3\beta} + 2c_{\alpha+\beta}) \Big] \,, \\ \lambda_{hhH} &= \frac{c_{\alpha-\beta}}{2v s_{\beta} c_{\beta}} \Big[(2M_h^2 + M_H^2) s_{\alpha} c_{\alpha} + m_{12}^2 (1 - 3\frac{s_{2\alpha}}{s_{2\beta}}) \Big] \,, \\ \lambda_{hHH} &= \frac{s_{\beta-\alpha}}{2v s_{\beta} c_{\beta}} \Big[- (M_h^2 + 2M_H^2) s_{\alpha} c_{\alpha} + m_{12}^2 (1 + 3\frac{s_{2\alpha}}{s_{2\beta}}) \Big] \,, \\ \lambda_{HHH} &= -\frac{1}{32v s_{\beta}^2 c_{\beta}^2} \Big[M_H^2 (c_{3(\alpha-\beta)} - c_{3\alpha+\beta} - 3c_{\alpha-\beta} + 3c_{\alpha+3\beta}) \\ &\quad + 4m_{12}^2 (s_{\alpha-3\beta} - s_{3\alpha-\beta} + 2s_{\alpha+\beta}) \Big] \,. \end{split}$$

Higgs self-couplings

Direct tests at the LHC: SM-like case

Direct tests at the LHC


• The relevant Higgs pair productions at the LHC are:

$$\sigma[gg \to hh], \quad \sigma[gg \to hH], \quad \sigma[gg \to HH]$$
• The parton-level cross section reads

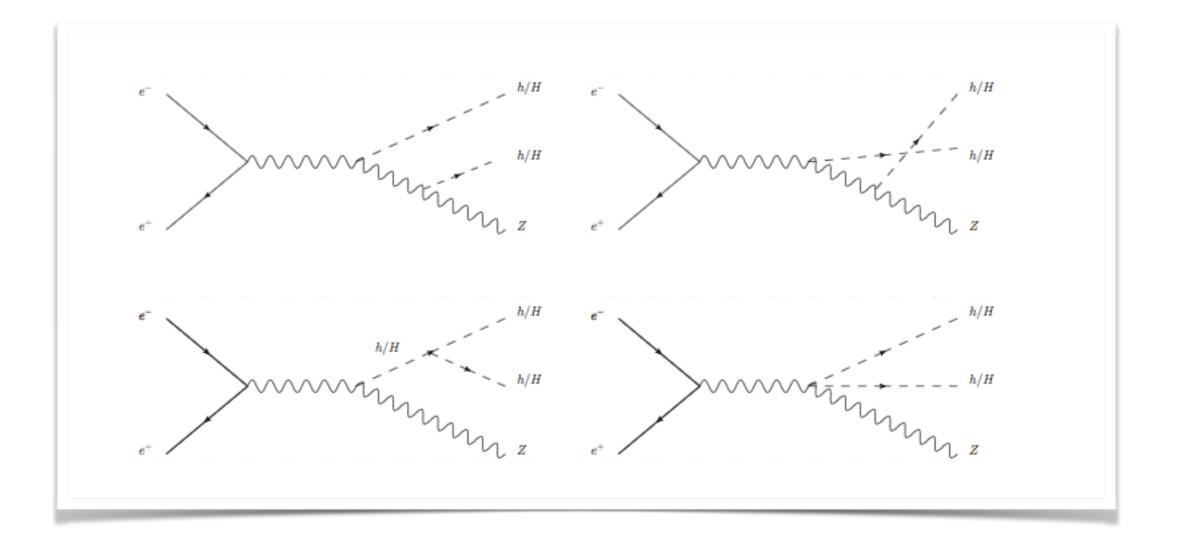
$$\frac{d\hat{\sigma}}{d\hat{t}} = K c^{ij} \frac{G_F^2 \alpha_s^2}{256(2\pi)^3} \left\{ \left| \sum_{q=t,b} (C_{\triangle}^{ij} F_{\triangle} + C_{\Box}^{ij} F_{\Box}) \right|^2 + \left| \sum_{q=t,b} C_{\Box}^{ij} G_{\Box} \right|^2 \right\}$$
with $K \approx 2$.
• The lab-frame cross section

$$\frac{d^2 \sigma}{dM_{hh} dp_T} = \int_{\tau}^1 \frac{dx}{x} f_g(x, \mu_F) f_g(\frac{\tau}{x}, \mu_F) \frac{2M_{hh}}{s} \frac{d\hat{\sigma}}{dp_T}$$

Direct tests at the LHC

Direct tests at the LHC

The signal rate estimations


$$\begin{split} \sigma[gg \to (hh, hH, HH) \to (XXYY)] &= \sigma[gg \to hh](\kappa_{XY}\text{Br}[h \to XX]\text{Br}[h \to YY]) \\ &+ \sigma[gg \to hH] \times \left(\dots\right) \\ &+ \sigma[gg \to HH](\kappa_{XY}\text{Br}[H \to XX]\text{Br}[H \to YY]) \end{split}$$

The conservative estimations of significances for SM Higgs boson pairs at the HL-LHC:

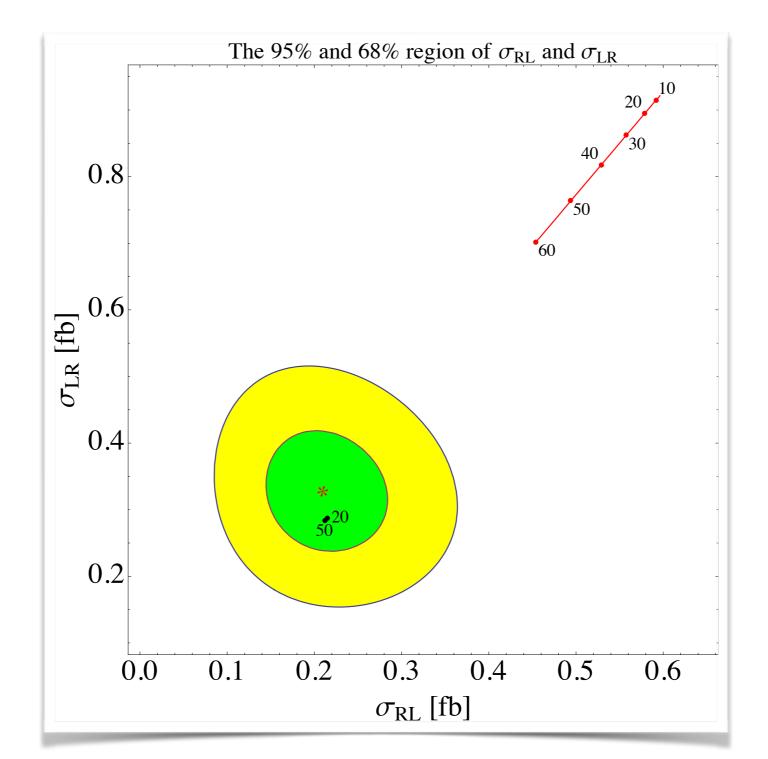
ATLAS: 1.05σ for $2b2\gamma$ CMS: $(0.39\sigma, 1.6\sigma)$ for $(4b, 2b2\gamma)$

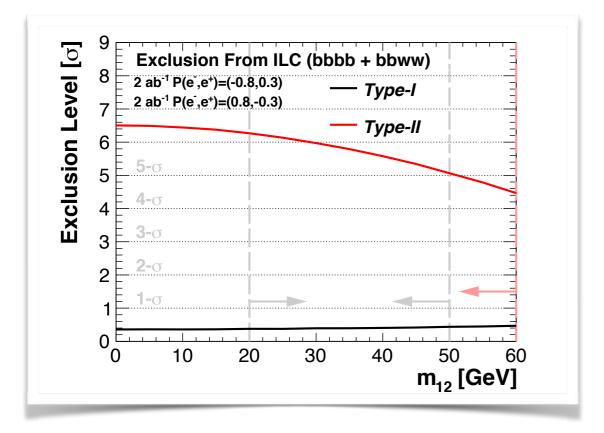
Not optimistic to probe the h/H mass-degenerate at the LHC:

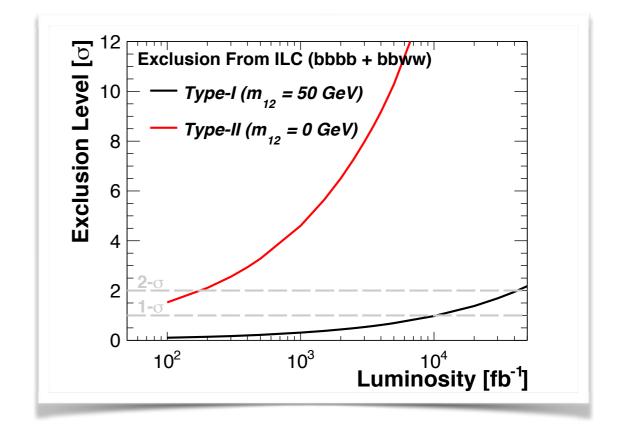
	4 <i>b</i>	2b2 γ
Type-I (<i>m</i> ₁₂)	$\sim 0.44 \sigma (20 - 50 { m GeV})$	1.61 σ (20 GeV) 1.64 σ (50 GeV)
Type-II (<i>m</i> ₁₂)	\sim 0.43 σ (0 – 60 GeV)	1.71σ (0 GeV) 1.75σ (60 GeV)

 The cross sections at the ILC can be expressed as (Hikasa: Phys.Rev. D33 (1986) 3203)

$$\sigma = \frac{1}{4} \Big[(1 + P_{e^-})(1 + P_{e^+})\sigma_{\mathrm{RR}} + (1 - P_{e^-})(1 - P_{e^+})\sigma_{\mathrm{LL}} \\ + (1 + P_{e^-})(1 - P_{e^+})\sigma_{\mathrm{RL}} + (1 - P_{e^-})(1 + P_{e^+})\sigma_{\mathrm{LR}} \Big],$$


where σ_{LR} : $(P_{e^+}, P_{e^-}) = (+1, -1)$ config.


• The ILC run at $\sqrt{s} = 500$ GeV with $\mathcal{L}_{int} = 4$ ab⁻¹ shared by $(P_{e^+}, P_{e^-}) = (\pm 0.3, \pm 0.8)$:


$$\sigma_{(+0.3,-0.8)} = 0.585 \sigma_{LR} + 0.035 \sigma_{RL},$$

$$\sigma_{(-0.3,+0.8)} = 0.035 \sigma_{LR} + 0.585 \sigma_{RL}.$$

The prospects (Claude Dürig: PhD thesis):

P (e ⁺ , e ⁻)	Channel	Excess significance	Precision on σ_{ZHH}
(0.3,-0.8)	$HH ightarrow bar{b}bar{b}$	3.5 σ	30.3%
(-0.3,0.8)	$HH ightarrow bar{b}bar{b}$	4.8σ	29.4%
(0.0,-0.8)	$HH ightarrow bar{b}bar{b}$	3.5σ	34.7%
(0.0,0.8)	$HH ightarrow bar{b}bar{b}$	4 .2 <i>σ</i>	33.7%
(0.6,-0.8)	$HH ightarrow bar{b}bar{b}$	4.2 σ	28.7%
(-0.6,0.8)	$H\!H ightarrow bar{b}bar{b}$	5.5σ	27.8%
(0.3,-0.8)	$HH ightarrow bar{b}W^+W^-$	1.91 σ	—

Summary

- The future prospects of distinguishing the massdegenerate Vs. the single resonance case, in the 2HDM.
- Direct measurements of Higgs signals: Higgs Yukawa && gauge couplings. We suggest to probe the Higgs self-couplings through Higgs pair productions.
- LHC: not likely to probe the scenario from the Higgs pairs, but can rule out this scenario by searching for A (very soon at run-II).
- Electron-positron colliders (ILC): direct measurements, can fully justify the Type-II case.

Thank you!